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Antineutrino Detection Technology Has A
Direct Impact On Other Areas Of
Nonproliferation And Nuclear Security
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“Nuclear Car Wash” Detectors Are Being Tested at LLNL for Active
Interrogation of Cargo

90% of the world’s trade moves ~

through sea-going containers '/ Hidden WMD
More than 6,000,000 containers
enter the U.S. annually

Cargo material is diverse
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Active interrogation is one element in a cargo
scanning system
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Thermal neutrons are known to induce B-delayed y-rays above 3 MeV in U,
Pu

Experiment by Norman et al. 2004 [1]
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Cargo experiments with HEU and 14 MeV neutron beam

HEU embedded in plywood
R;=61 cm (40 g/ cm? wood)
Plastic Scintillators Rd =25m (60 g / cm?2 WOOd)
PN 357 (98 EeV) Y, ~ 6x10' n/s initial
Wood ®_~ 6x10%n/s/cm? at target

0.58 g/ cm? :
Plastic - 4.

The Experiment:

1. Turn on beam for 30 sec

2. Turn off beam

3. Acquire counts for 100 sec

max E =~ 14 MeV



Detectors Used Are Very Similar in Scale and Design to San
Onofre Detector

4 fest

2 feet

6 inches 6 inches & inches

Total of 8 plastic scintillator
6-10" deep, 2-4 feet wide

4 ganged liquid scintillator
detectors 6 foot tall, 8” diameter
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14 MeV beam induces a troublesome background for E, > 3 MeV

~ Nat-U and background pulse height spectra
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50% HPGe spectra after irradiation with 14 MeV neutrons,
with and without the 22 kg nat-U target.
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First Results in 2005: Decay curves show fission dominates '°N
contamination after a few half-lives
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Delayed y-ray signal stands out to 5c in wood

+ Single cycle decay curves are shown
for Ry=1,2,3 and 4 ft. plywood.

* Normalized to 25 pA (100 W) into the 1 irradiation cycle
d, gas target. - ot s ]
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Improving Passive Detection of HEU and Pu using Plastic Scintillator
and a Statistical Theory of the Fission Chain

A chain initiated by spontaneous fission of Pu-240

n + 239Pu — 27Zr + 139Xe + 4n
240pu — 398r + 138Ba + 2n

n+H->D+7y
240py
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Neal Snyderman, Dan Dietrich, Chris Hagmann, Wolfgang Stoeffl, et. al
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Number of neutrons emitted in fission
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A simple time-correlation study: look at time series of

counts

From one 512 usecond interval to the next, sometimes very

different numbers of counts are recorded
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Signature of fission

The increased width of the Pu data distribution over that of a random
distribution is due to the very large fluctuations in the number of
neutrons emitted from one fission chain to the next
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To fully exploit time signatures, we want to measure gamma-
gamma, neutron-neutron, and gamma-neutron time correlations
within burst-like fission chains occuring at low rates

« Examples of time signatures
— ns to ten ns time correlations in the gamma shower

— Microsecond time correlations persist even after thermalization
of neutrons

— Microsecond time correlations can persist even after neutron
capture and conversion to 2.2 MeV gamma ray

— Muons can create burst-like events that mimic the signal

« Doped/undoped plastic or liquid scintillator detectors with a veto
fulfill many the requirements for exploiting this rich signature

— large solid angle

— ns timing resolution with waveform digitizers

— Good efficiency for fast neutrons and gammas

— with dopants, good efficiency for thermal neutrons

— pulse shape discrimination may also be useful (depending on
detector geometry)
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Recent studies: one element of a 5-sided passive HEU
detection test bed

8 each
1 mx 10 cm x 20 cm plastic scintillator

tubes with opposite
side readout

5 cm
plastic muon
veto paddles

First implementation uses 3He
tubes for thermal neutron detection
- neutron recoil or capture in doped
scintillator can also be used

Detector elements, size
and readout are close
analogs of

antineutrino detectors



Recent data recorded with a scintillator/*He system
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Summary of fission chain studies

» There exists a fission chain signature from high multiplication HEU (and Pu) that
can be passively exploited for detection
— using large neutron and y-ray detectors outside a shipping container or other
— even from low multiplication, if you can wait long enough (as we demonstrated experimentally)

« Backgrounds from natural radioactivity can blind the (n, y) signal, but

— high multiplication events can be picked out for by statistical techniques
— with fast timing, prompt fission y-ray signal can be seen between background counts

- Background from cosmic ray showers interacting with cargo can create a signal
qualitatively similar to the fission chain signal

Cubic meter scale scintillator detectors with a muon veto

hold promise for passive HEU detection
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The point(s)

« San Onofre like detectors have wide application outside of
basic or applied antineutrino physics

« Other problems in nonproliferation and nuclear security are
as interesting as reactor monitoring

« This community and technology can help solve those
problems

« Spectroscopy isn’t everything
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