Applied Antineutrino Physics Workshop

An Alternative Design based on Inverse Beta Detection

Jim Lund
Sandia National Laboratories

• History
• The immediate future
• The 2-3 yr. time frame
• The beehive
• Summary

This work supported by the United States Department of Energy under contract number DE-AC04-94AL85000. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy.
History

• Our first generation detector
 – Conservative design
 – It works!
 – Inefficient
 – Big
Immediate Future

• The next generation detector
 – To be deployed quickly (mid 2007)
 – More efficient
 – A straightforward extension of existing work
 – Much better electronics
 – Probably a Gd loaded scintillator with better optics and more hermetic muon veto
Intermediate future (2 to 3 yr.)

– My pitch!
– A relatively advanced inverse beta design
– Smaller!
– More efficient!
Proposed Design for 2 to 3 yr. Timeframe
“The Beehive”

- Liquid scintillator (~1 m³)
- Honeycomb partition immersed in liquid scintillator
- Thin acrylic honeycomb coated with $^6\text{LiF}:\text{ZnS(Ag)}$ scintillator
- Read out with ~100 PMTs
ZnS(Ag) scintillator with 6Li loading

Proposed Design

Liquid organic scintillator with pulse shape discrimination
A neutrino hit in the proposed design

- Neutrino interaction signature
 - Positron
 - one cell (discounting annihilation photons)
 - Electron-like event in liquid scintillator (fast pulse decay)
 - Neutron
 - Bright ZnS pulse in two adjacent cells about ~10 µs after positron

\[\bar{\nu}_e + p \rightarrow e^+ + n \]
Background events
Fast neutron enters detector

Existing Detector
• Mimics antineutrino capture
 – Pulse from n-p scatter
 – Followed by n-capture on Gd

Proposed Detector
• Cut because:
 – n-p scatter distinguishable from pulse shape
Background events
fast neutron into detector

Neutrino-like event

Background event (fast neutron capture)
Background events
slow neutron into detector coincident with gamma ray

Existing Detector
• Mimics antineutrino capture
 – Pulse from n-p scatter
 – Followed by n-capture on Gd

Proposed Detector
• Cut because:
 Gamma event very unlikely to be in same cell as neutron event

\[\bar{\nu}_e + p \rightarrow e^+ + n \]

\[\nu + e^-; \ n + ^6Li \]
Background events
two chance gamma-rays within time window

Existing Detector
• Mimics antineutrino capture

Proposed Detector
• Cut because:
 No signal from ZnS scintillator
 gammas do not deposit enough energy in ZnS and light from neutron on Li is very large = \(Q = 4.8 \text{ MeV} \)
 Light pulses from more than one cell
Beehive Detector

- More efficient than existing detector
 - Due to \(\sim 100\% \) efficiency of neutron capture reaction in \(^{6}\text{LiF}:\text{ZnS(Ag)} \) scintillator

- Greater background rejection
 - Phase space of signal cuts is much richer; easier to classify events
 - Spatial, pulse shape, and two types of scintillator

\(\bar{\nu}_e + p \rightarrow e^+ + n \)
But Wait, There’s More!
Some directionality!

ZnS(Ag) scintillator with ^6Li loading

$\bar{\nu}_e \rightarrow \text{n}$

$\nu_e \rightarrow \text{n}$
But Wait, There’s More!
Some directionality!

- Although neutron diffusion is a random walk, a slowing neutron preserves a memory (if sloppy) of its original momentum.
- This property has been observed and exploited in neutrino detection before.

![Graph showing neutron properties](image)

FIG. 5. The shift (solid line) $\langle x \rangle$ and width (long-dashed line) $\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$ for monoenergetic neutrons (initial kinetic energy T_n) emitted from the origin, moving initially along the x-axis. Note $\langle y \rangle = \langle z \rangle = 0$, and $\sigma_x = \sigma_y = \sigma_z$. We used a $\text{(CH}_2)_n$ liquid of density 0.80 g/cm^3, with or without 0.1% Gd doping by mass.
A recent experiment

![Graph showing experimental data and exponential fits]

- Start-stop time interval [µs]: 0 2 4 6 8 10
- Frequency of occurrence [counts]: 100 1000
- Experimental data:
 - 1.5 µs exponential fit
 - 13 µs exponential fit

![Diagram showing PMT and Scintillator]

- PMT
- LiF/ZnS(Ag) Scintillator
- Trans-Stilbene 2” single crystal
Summary and Acknowledgements

• A highly segmented detector with $^6\text{LiF:ZnS(Ag)}$ scintillator partitions looks very attractive for monitoring of reactor antineutrinos.

• We want to do some design experiments!

• We are very, very grateful to Sandia National Laboratories for giving us funding to study this concept under a Laboratory Directed Research and Development project:
 – Project Title: Neutrino Detection Technology Development
 Project Number: 102607