Antineutrino Monitoring of Reactors
Theoretical Feasibility Studies

Michael Nieto, Bill Wilson, Holly Trellue, AH

Los Alamos National Laboratory
Can antineutrinos be used to monitor Pu content of reactor?

Are undeclared fuel removals/diversions detectible with neutrinos?

Are other fuels distinguishable from Lightly enriched Uranium (LEU), e.g., 232Th-233U

Can neutrinos verify the burnup of MOX-Pu fuel?

Can neutrinos determine the isotopic content of spent fuel?

Can neutrinos detect the movement/diversion of spent fuel?
Antineutrino Spectra for Different Fissionable material distinguishable

\[N(E_\nu) = \sum Y_i(A_i, Z_i) \sum b(E_{i0}) \cdot N(E_\nu, A_i, Z_i, E_{i0}) \cdot F(E, Z) \]

Fission fragment yields
\(~ 300\)

Branching ratios
\(~ 10\) per fragment

Approximately 10% of the beta decays have unknown end-point energies \(E_0 \)
Use continuous theory of beta-decay or energy-independent scaling
Reactor Burn Calculations using LANL code Monteburns

Monte Carlo burnup code that links MCNP transport with isotope production/depletion code CINDER’90 (or ORIGEN2.1)

Monteburns Flow Chart

- Accurate reactor modeling for a broad class of fuels.
 - Spatial and temporal power, fuel composition, radiation and decay heating

- Detailed characterization of removed fuel content and emissions.
 - Fuel proliferation index, weapons usability, decay signatures for safeguards

Los Alamos National Laboratory
Antineutrino Spectrum for Different Fuel Diversion Scenarios

Start of cycle:
1/3 fresh 2.7% enriched
1/3 irradiated 1 year
1/3 irradiated 2 years

End of cycle:
1/3 irradiated 1 yr, 2 yr, 3 yr

Diversion of 10% (> Critical Mass):
37% fresh 2.7% enriched
33% 1 yr, 30% 2 yr

Gross Violation (diversion of 1/3):
2/3 fresh 2.7% enriched
1/3 irradiated 1 yr
Antineutrino Monitoring of Th-U-233 reactors - Advanced Fuel cycle concept

\[
\begin{align*}
^{238}\text{U} + n & \rightarrow ^{239}\text{U} \quad \sigma = 1.73 \text{ b} \\
^{239}\text{Np} + \beta^- + \nu & \rightarrow ^{239}\text{Pu} + \beta^- + \nu \\
^{232}\text{Th} + n & \rightarrow ^{233}\text{Th} \quad \sigma = 4.62 \text{ b} \\
^{233}\text{Pa} + \beta^- + \nu & \rightarrow ^{233}\text{U} + \beta^- + \nu
\end{align*}
\]

Advantages of Th-U fuel cycle:
• Abundance of Th 3 times than U
• Reduced proliferation hazard
• Reduced radiological hazard

Main Disadvantage:
• Requires fissile seed \(^{235}\text{U}\) to initiate cycle

Seed: LEU \(^{238}\text{U} + 2.7\%^{235}\text{U}\)
Blanket: \(\text{ThO}_2\) or \(\text{ThO}_2 + 20\%\) LEU
Proliferation Implications for Th-U Cycle

Weapons usability of ^{233}U determined by the proliferation index

Proliferation Index:

$$PI = \frac{^{233}\text{U} + 0.6^{235}\text{U}}{U_{\text{total}}} < 12\% \text{ if non-weapons usable}$$

PI typically requires about 20% of ThO_2 rods to contain LEU ($^{238}\text{U} + 2.6\%^{235}\text{U}$)

Examine antineutrino spectra differences for Th-U fuels comply/violate PI
Derived β/γ spectra for ^{232}Th and ^{233}U from ENDF/B-VI data

^{232}Th spectrum very similar to ^{238}U - enhanced
^{233}U spectrum very similar to ^{239}Pu - suppressed
Reactor Burn calculation for Th-U cycle

a. Th0\textsubscript{2}+LEU PI compliant
b. ThO\textsubscript{2} to max weapons usability

- Fast in-growth of 233U in both cases, but especially for pure Th0\textsubscript{2}
- Burn for the purposes of producing weapons usable 233U very distinctive
Antineutrino Spectra for Th-233U cycles

Number of ν/fission drops steadily as 233U grows
Considerably faster drop than seen from in-growth of Pu in PWR LEU case
Situation Complicated by Change in Power Density for Th-U Burn

- For PWR LEU reactors power density remains approximately constant.

- For Th-U reactors the power would be shared between LEU seed assemblies and Th-U blanket assemblies.

- Power in Th-U-233 assemblies can change significantly over several cycles and be compensated for by a change in the LEU power.

Need detailed model of change in power density in order to determine expected change in antineutrino spectrum.
Burning of Weapons-grade and Reactor-grade MOX Pu

Schemes to burn MOX fuel to burn Pu

$$U_0^2 + 5.3\% \text{ PuO}_2$$

Starting Isotopics for Weapons- and Reactor-grade fuels

<table>
<thead>
<tr>
<th>w%</th>
<th>Weapons-Grade</th>
<th>Reactor-Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-235</td>
<td>0.67897%</td>
<td>0.67897%</td>
</tr>
<tr>
<td>U-238</td>
<td>93.622%</td>
<td>93.622%</td>
</tr>
<tr>
<td>Pu-238</td>
<td>-</td>
<td>0.2026%</td>
</tr>
<tr>
<td>Pu-239</td>
<td>5.0%</td>
<td>2.6527%</td>
</tr>
<tr>
<td>Pu-240</td>
<td>0.3%</td>
<td>1.373%</td>
</tr>
<tr>
<td>Pu-241</td>
<td>-</td>
<td>0.5345%</td>
</tr>
<tr>
<td>Pu-242</td>
<td>-</td>
<td>0.5372%</td>
</tr>
</tbody>
</table>
Antineutrino Spectra Emitted for Pu MOX Fuels Clearly Distinguishable

Number Antineutrinos/fission *increase* with burn for MOX PU
May be able to distinguish grade of fuel from power density
Monitoring Spent Fuel

The antineutrino source describes total activity well - essentially all decays are β-decay.

Calculated activity of discharged fuel drops to:
- 7.5% in the 4 weeks
- 1.5% in a year
- 0.2% in 10 years

Fuel assembly would have to be moved far from reactor
Radioactivity at WIPP
Carlsbad, NM

WIPP designed to store ~ 9000 Mtonnes of radioactive waste

Presently 25% full

Radioactivity includes:
Antineutrinos
Betas
Delayed photons
Alphas
Delayed neutrons

WIPP antineutrino and beta spectra
Dominated by 241Pu 18 keV β-decay
Summary

- For LEU PWR gross changes in fuel content likely to be observable
- Diversions of a critical mass of Pu from GW LEU PWR difficult to detect
- Th-U233 fuels distinguishable from LEU
- Violations of the proliferation index for Th-U233 quite distinguishable.
 important for monitoring the proposed Indian breeder reactor program.
- Burning of MOX Pu fuels also distinguishable
- Antineutrino spectrum from spent fuel peaks at very low energies