Very Low Threshold Scattering - an Experimentalist's Perspective

Low Threshold Detectors for Detection of Coherent Neutrino Scattering

December 6-7, 2012
Livermore Valley Open Campus, Livermore, CA

Blas Cabrera
Spokesperson SuperCDMS
Physics Department & KIPAC Stanford University
and
SLAC National Accelerator Center
Outline

• Rates for coherent scattering off of nuclei
• Scattering off of electrons flavor dependent
• Sensitivity to magnetic dipole moment of neutrino
• Reactor experiment coherent scattering rates
• Experimentally need low threshold detectors and low backgrounds achieved at a shallow site

• Also see talks tomorrow:
 - Experimental Challenges and Sensitivity Reach with Phonon Detectors - E. Figueroa- Feliciano
 - Phonon Mediated Detection and Very Low Temperature Detectors
 - N. Mirabolfathi and M. Pyle
 - Solid State Dark Matter Detectors - B. Sadoulet
Nuclear Reactor Site

- Tendon gallery
- Antineutrino flux 6×10^{12} per cm2 per sec
- Shielding from cosmic rays about 20 mwe
- Ge diode experiment
 - J. Collar
 - P. Barbeau
Model Reactor Neutrino Experiment

• A neutrino with incident energy E_ν will scatter off an electron $M = m_e$ or a nucleus M with recoil energy T with a cross section

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{2\pi} \left\{ \left(C_V + C_A \right)^2 + \left(C_V - C_A \right)^2 \left[1 - \frac{T}{E_\nu} \right]^2 - \left(C_V^2 - C_A^2 \right) \frac{MT}{E_\nu^2} \right\}$$

for $0 \leq T \leq 2E_\nu^2/(2E_\nu + M)$

• For neutrino scattering off electrons

$$C_V = 2\sin^2 \theta_W + (-)^{1/2} \quad C_A = +(-)^{1/2}$$

for ν_e (ν_μ or ν_τ) and for $\bar{\nu}$'s $C_A \rightarrow -C_A$

• For scattering off nuclei Z protons and N neutrons

$$C_V = \left(2\sin^2 \theta_W - \frac{1}{2} \right) Z + \left(\frac{1}{2} \right) N \quad \text{and} \quad C_A = 0$$

• Cross section larger than electron scattering by N^2
100 day run with 3 kg of Si Detectors

- In principle, we can measure total neutrino flux with nuclear scattering and electron neutrino flux with electron scattering
- But backgrounds are much more difficult for electron scattering

![Recoil spectra for a 235U reactor](chart)

Fig 48. Coherent neutrino scattering at reactor: (a) Event rate versus recoil energy, (b) Monte Carlo for 100 days with 3 kg. Coherent nuclear scattering and antineutrino electron scattering are shown, as well as antineutrino muon electron scattering for use in estimating the sensitivity to oscillation experiments. In order to look at the statistics for a reactor experiment, we made Monte Carlo models of 100 day runs with a 3 kg silicon mass. Fig 48b shows the results for coherent nuclear scattering, with 0.1 keV bins. A 0.5 keV threshold would yield hundreds of events per 0.1 keV at the lower energies. The recoil energy spectrum could be fit with some accuracy up to about 3 keV.
Nuclear recoils in 300 day run

- Coherent nuclear scattering, with 0.1 keV bins. A 0.5 keV threshold would yield hundreds of events per 0.1 keV at the lower energies. The spectrum could be fit with some accuracy up to about 3 keV.

![Coherent neutrino scattering at reactor](image)

 divide by 30 to convert y-axis to events per keV per kg per day
Magnetic moment neutrino measurement

- Measure directly the magnetic moment of the neutrino through the coupling of magnetic moment to the electric charge of an electron or a nucleus.

- To model the effect of a neutrino magnetic moment on a reactor experiment, we use the additional neutrino-electron scattering cross section,

\[
\frac{d\sigma}{dT} = \frac{\pi \alpha^2 \mu_v^2}{m_e^2} \left[\frac{1}{T} - \frac{1}{E_\nu} \right]
\]

and for coherent nuclear scattering on a spin-zero nucleus,

\[
\frac{d\sigma}{dT} = \frac{\pi \alpha^2 \mu_v^2}{m_e^2} \left[\frac{1}{T} - \frac{1}{E_\nu} + \frac{T}{4E_\nu} \right] Z^2
\]

but there exists a \(T_{\text{min}} \) which is related to distance over which the electron or nuclear charge is screened.
For 300 kg-day reactor experiment

- The magnetic moment effects can be large particularly for electron scattering. Shown are the simulated results of a 100 day run with a 3 kg mass Si detector.

- Potentially such an experiment can set a direct upper limit approaching 10^{-11} Bohr magnetons or better.

\[
\begin{align*}
\text{Events per kg per day per MeV} \\
\text{Recoil Energy (MeV)}
\end{align*}
\]

\[
\begin{align*}
\text{Recoil energy in MeV} \\
\text{Number of counts}
\end{align*}
\]

\[
\begin{align*}
\frac{d}{dT} = \frac{2}{m_e^2} \mu^2 \frac{T}{E_T} \\
\end{align*}
\]
Background considerations

• Clearly, these event rates alone mean nothing until we compare them with backgrounds from radioactivity and neutrons.

• The CDMS experiment at SUF had nearly the same background considerations at 20 mwe overburden with a muon veto.

• Thus the background management strategy used for that experiment would be directly applicable for the reactor neutrino detector.

• These backgrounds are nearly all electron recoils from gammas and beta decays and would be largely removed by the discrimination of electron recoils versus nuclear recoils in our detectors.
Stanford Underground Facility (SUF)

Neutrons are the dominant background of concern at any experimental site. All other sources (alpha, beta or gamma radioactivity in the laboratory structure or the apparatus immediately surrounding our detectors) can be avoided through local shielding, careful selection of materials, discrimination with respect to the ionization versus heat produced in the detectors, and fiducial volume cuts. Events caused by highly-penetrating...
CDMS backgrounds at SUF

- Upper two plots for Si detectors
- Left muon coincident
- Right muon anti-coincident
- Lower two plots for Ge detectors
- Left muon coincident
- Right muon anti-coincident
Detailed analysis of SUF data

- Top plot is combined Ge (upper panel) and Si (bottom panel) WIMP candidate event rates as a function of recoil energy.
- Bottom plot is ionization yield vs recoil energy for unvetoed single scatters for Ge (top panel, Z5 6 V) and Si (bottom panel, Z4 3 V) WIMP searches.
- From PHYSICAL REVIEW D 82, 122004 (2010)
CNS - Recoil Energy Scale is lower

- Never Been Measured!
- $M_N \gg E_\nu$ & 4 momentum conservation dictates:

$$\Delta P \lesssim 2P_\nu$$
$$\Delta E \lesssim \frac{\Delta P^2}{2M_n} = \frac{2E_\nu^2}{M_n c^2}$$

from M. Pyle
CNS - Reactor Trigger Thresholds

\[\bar{\nu}N \rightarrow \bar{\nu}N \] Signal Rate \((3GW_t \text{ & } r=25m)\)

- Reactor Experiment Trigger Threshold Requirements
 - Si: \(130\text{eV}_{nr}\)
 - Ge: \(40\text{eV}_{nr}\)

from M. Pyle
Athermal Phonon Detection Principles

QET (quasiparticle trap assisted electrothermal feedback transition edge sensor)

- Become insensitive to C_{absorber} by collection and concentration of Phonons
- More Complex
- Collection efficiencies (ϵ)
 - Theoretical Max: $\sim 40\%$
 - Best Measured: $20 \pm 4\%$
 - CDMS II: 1-4\%
 - SuperCDMS $\langle \epsilon \rangle$: $\sim 12 \pm 3\%$
 - Active Research Area for Stanford SuperCDMS
- Not New -> CDMS technology (10+ yrs)

from M. Pyle
Advanced IZIP Detectors

- Phonon TES rails
- Charge electrode

Carrier Collection

- 109Cd and 133Ba Sources

Phonon Surface Event Discrimination

- All
- Asymmetric Charge
- Symmetric Charge
- Bulk Phonon

Coherent Neutrino Scattering Workshop | Page 16 | Blas Cabrera - Stanford University
Pb210 Source Data from SuperCDMS Soudan

- Two detectors with one Pb210 decay every min operated for 20 live days corresponds to more than total Pb210 events for SuperCDMS Soudan and even for future 200 kg SuperCDMS SNOLAB.
Optimize QET design

- Detailed testing of fabrication techniques using 2.6 keV x-rays allow us to measure the quasiparticle trapping length and the transmission from Al fins to W TESs.
Further Optimization of Al Fins

• Adjust length of Al fins to optimize quasiparticle collection into TES lines
• Adjust length of W lines to avoid phase separation along each line
• Adjust W transition temperature to optimize energy resolution
Characterize Performance of TES

We calculate transition width from power curve using

\[P_J = \Sigma (T_e^5 - T_{ph}^5) \]
Transition Temperature Gradient Problem

- Voltage biased TES sensors were invented to solve the Tc gradient problem for large area sensors

With current bias, there did not exist a bias temperature for all, but with self voltage biasing all at high sensitivity.
• **Electrothermal Feedback**

 – Voltage bias intrinsically stable
 \[C \frac{dT}{dt} = \frac{V_B^2}{R} - \Sigma (T_e^n - T_{ph}^n), \quad n = 5 \]

 – Fast response
 \[\tau_{\text{eff}} = \frac{\tau_0}{1 + \alpha/n}, \quad \tau_0 = \frac{C}{g}, \quad g = n \Sigma T_e^{n-1} \]

 – High Sensitivity
 \[\Delta E_{\text{FWHM}} = 2.355 \sqrt{4k_B T_e^2 C \frac{n}{2}} / \alpha = 2.355 \sqrt{4k_B T_e P_J \tau_{\text{eff}} \sqrt{\frac{n}{2}}} \]

 For \(E_{\text{sat}} \sim CT_e / \alpha = P_J \tau_{\text{eff}} \) = 10 keV then \(\Delta E_{\text{FWHM}} = 1.1 \text{ eV} \)
Summary

• Interesting science applications at low energy
 - neutrino-nucleus coherent scattering
 - searches of sterile neutrinos
 - limits on neutrino magnetic dipole moment
 - ultra-light dark matter candidates (~MeV)

• iZIP advanced detectors reject surface electrons
 - interleaved design allows identification of surface events
 - preserves timing discrimination
 - demonstrated nuclear recoil discrimination with phonons

• Sub - 100 eV thresholds seem technically possible
 - Tc^3 scaling for athermal phonon detectors shown
 - Optimize detector design to maximize phonon collection