Nuclear explosion monitoring:
What can neutrinos add
to the global system?

Rachel Carr, MIT
Applied Antineutrino Physics
October 11, 2018 – Livermore, California
Hypothetical roles for neutrinos in nuclear explosion monitoring:

- Detect explosions otherwise missed by global network.
- Confirm nuclear nature of detected explosion.
- Estimate fission yield and indicate fusion yield or seismic decoupling.
Hypothetical roles for neutrinos in nuclear explosion monitoring:

For each case, consider:

1. **Signal** physics
2. **Detection** strategy
3. **Costs & benefits** within existing explosion monitoring network
Use neutrinos to detect missed explosions?

Neutrino signal from a nuclear fission explosion:

10^{24} neutrinos per kiloton fission yield

Compare to reactor:

1 kton \approx 1 GWh

Unlike reactor, signal comes \sim all at once

Most neutrinos emitted within 10 s after detonation

A. Bernstein et al.
Science & Global Security (2001)
Use neutrinos to detect missed explosions?

With Gd-doped water...
Need $60 \times \text{Super-K}$ to see $10 \, \nu$ from 1 kton @ 100 km

“In short, while antineutrino detectors are in theory very attractive for [Comprehensive Test Ban Treaty] verification, engineering difficulties and ultimately physics limitations severely proscribe actual applications.”

—A. Bernstein et al. (2001)

Cost of capable detectors \gg Benefit to CTBT regime
Confirm nuclear nature of explosion?

Easier than detection *per se*. Can use seismic signal as analysis trigger.

Simple summation model of neutrino emission from 235U explosion

R. Carr, F. Dalnoki-Veress, A. Bernstein (2018)
Confirm nuclear nature of explosion?

Size of Gd-doped water detector required for 90% probability of confirming nuclear fission at 99% CL

![Graph showing the required size of detectors for different distances from the explosion site.](image)

Central values scaled from WATCHMAN efficiency and backgrounds

R. Carr, F. Dalnoki-Veress, A. Bernstein (2018)
Confirm nuclear nature of explosion?

Size of Gd-doped water detector required for 90% probability of confirming nuclear fission at 99% CL

Example: Hyper-K for ~25 kton @ 100 km
... but ~10× Hyper-K for 250 kton @ 900 km (above)
Confirm nuclear nature of explosion?

Size of Gd-doped water detector required for 90% probability of confirming nuclear fission at 99% CL

Largest physics detectors (~Mton, ~$1B) could have some value here. Detectors just to confirm nuclear nature: cost very high, benefit limited.

Rachel Carr (MIT) — AAP 2018
Estimate fission yield of explosion?

For known 235U explosion, viewed in 1 Mton detector:

<table>
<thead>
<tr>
<th>L</th>
<th>True yield</th>
<th>Most probable 68% CL interval on yield, based on \bar{v}</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 km</td>
<td>250 kton</td>
<td>170–330 kton (i.e., $\sim 30%$ uncertainty)</td>
</tr>
<tr>
<td>200 km</td>
<td>50 kton</td>
<td>40–60 kton (i.e., $\sim 20%$ uncertainty)</td>
</tr>
</tbody>
</table>

Possible in largest proposed physics detectors, with limited coverage. Purpose-built detectors: benefit significant, but cost very high.
Indicate seismic decoupling, or fusion yield?

In principle, compare signals:

- Neutrino > seismic → possible seismic decoupling
- Neutrino < seismic → some yield from fusion

In practice:
- Need Mton or larger detector
- Need very high precision on seismic & neutrino signals
- Need to know isotope mix that fueled explosion
- Effects could combine and complicate interpretation …

A stretch even for largest proposed physics detectors. Purpose-built detectors: benefit significant, but cost extremely high.
What can neutrinos add to the global monitoring system for nuclear explosions?

In theory, some valuable information. **In practice**, explosion monitoring is probably not a strong niche for neutrinos, beyond incidental capabilities in large physics detectors.

We can see this as a good thing. **It is a testament to the power of existing explosion monitoring technology. Neutrinos may have better niches.**
Neutrinos from nuclear explosions:
a clever idea... **still undetected.**
Neutrinos from nuclear explosions: a clever idea... still undetected.

Neutrinos from nuclear reactors:
3 million and counting = a proven resource.
Thank you

MIT Laboratory for Nuclear Security and Policy
Latest North Korean test visible in Super-K?

<5% chance of neutrino from latest North Korean test in Super-K

An estimate of Sep. 2017 test:

\[Y = 250 \text{ kilotons}^* \]

*“The nuclear explosion in North Korea on 3 September 2017: A revised magnitude assessment.” NORSAR. 12 Sep 2017.

Distance to Super-K site:

\[L = 900 \text{ km} \]

Fiducial volume of Super-K:

\[V = 22,500 \text{ m}^3 \ (N_p = 1.5 \times 10^{33}) \]

Detection efficiency (without Gd):

\[\eta < 0.20 \]

\[
N_{\text{obs}} \approx \frac{\eta Y}{4\pi L^2} \frac{1.45 \times 10^{23}}{\text{kton}} \text{ fiss.} \int_{t_0}^{\infty} dt \int_{E_{\text{min}}}^{\infty} dE \Phi_{\nu}(E, t) P_{\text{surv}}(E, L) \sigma(E) \lesssim 0.05
\]
Neutrino energy spectrum: explosion vs. reactor

Simple summation model of neutrino emission from 235U explosion

R. Carr, F. Dalnoki-Veress, A. Bernstein (2018)