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Speaking for

SuperCDMS Collaboration

Nader Mirabolfathi
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Standard Model of Particle Physics
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Standard Model of Particle Physics

Fantastic success of Standard Model but unstable
Why is H, W and Z at %100 M,?

Need for new physics at that scale
supersymmetry
additional dimensions, global symmetries

In order to prevent the proton to decay, a hew quantum number

=> Stable particles: Neutralino
Lowest Kaluza Klein excitation, little Higgs
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Standard Model of Particle Physics

Fantastic success of Standard Model but unstable
Why is H, W and Z at %100 M,?

Need for new physics at that scale
supersymmetry
additional dimensions, global symmetries

In order to prevent the proton to decay, a new quantum number

=> Stable particles: Neutralino
Lowest Kaluza Klein excitation, little Higgs

Bringing Cosmology and Particle Physics together: a

remarkable concidence
Particles in thermal equilibrium

+ decoupling when nonrelativistic |
Freé€ze out when annihilation rate # expansion rate

3-10%cm’/ s ’
= Q h’ = =0, = a2
(o) M2
Cosmology points to W&Z scale
Inversely standard particle model requires new physics at this scale

=> significant amount of dark matter

Weakly In*rer'ac‘l'ing Massive Particles
Dark Matter could be due to TeV scale physics
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Dark Matter: An Exciting Timel!
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Dark Matter: An Exciting Timel!

Credit: Joerg Jaeckel
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Dark Matter: An Exciting Timel!

Credit: Joerg Jaeckel
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ngh Mass Region
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CDMS II December 2009

Tonization + AThermal Phonons
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CDMS II December 2009
Tonization + AThermal Phonons

7.5 cm@ 1 cm thick #250g o R
4 phonon sensors on 1 face »
2 ionization channel
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CDMS II December 2009

gy

Tonization + AThermal Phonons

7.5 cm@ 1 cm thick #250g
4 phonon sensors on 1 face
2 ionization channel

Tonization/Recoil ener
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CDMS II December 2009
Tonization + AThermal Phonons

7.5 cm@ 1 cm thick #250g
4 phonon sensors on 1 face
2 ionization channel
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CDMS II December 2009
Tonization + AThermal Phonons

7.5 cm@ 1 cm thick #250g
4 phonon sensors on 1 face
2 ionization channel

Tonization yie Timing -> surface discrimination
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Ge:Getting rid of the surfaces
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Phonon TES rails

Charge electrode N\ — =
> N e ———— —

- o

Bter—— PSR ] SRS T SRR ]
e = H -“Q‘Il”oﬁ
- . ST TR

Interleaved electrodes
Reviving an idea of P. Luke (also used by EDELWEISS)
Events close to the surface seen on one side

zEvents in the bulk seen on both sides

Ge:Getting rid of the surfaces
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Reviving an idea of P. Luke (also used by EDELWEISS)
Events close to the surface seen on one side

‘ A vents in the bulk seen on both sides
Test with <*“Pb in low background environment

@® Failing Charge Symmetry Selection

@® Failing Charge Symmetry Selection
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SuperCDMS Soudan Large Mass Region
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SuperCDMS Soudan Large Mass Region

@ 76mm thickness
25mm

Mass 630g
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SuperCDMS Soudan Large Mass Region

@ 76mm thickness
25mm

Mass 630g
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Low Mass Dark Matter
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Low Mass Dark Matter

Other possibilities! The Dark Matter sector could
be complex or have different interactions e.g.,

Excited states
Weiner but now dead (CDMS, Xenon 10)
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Low Mass Dark Matter

Other possibilities! The Dark Matter sector could
be complex or have different interactions e.g.,

Excited states
Weiner but now dead (CDMS, Xenon 10)

A mirror dark matter sector
Maybe with matter-antimatter asymmetry
Would explain naturally why 2om*6 (Qparyon if Mpm=6 My
Could even be the origin of baryogenesis!

High cross sections within the dark matter sector?
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Low Mass Dark Matter

Other possibilities! The Dark Matter sector could
be complex or have different interactions e.g.,

Excited states
Weiner but now dead (CDMS, Xenon 10)

A mirror dark matter sector
Maybe with matter-antimatter asymmetry
Would explain naturally why 2om*6 (Qparyon if Mpm=6 My

Could even be the origin of baryogenesis!

o LEP (~LHC) voc S
2 arXiv 1203.2531

High cross sections within the dark matter sector?

S|
5

—————

Sub 6eV Dark Matter -
Naturalness? e
Electric/Dipole moment ;0 Tl

Graham, Kaplan, Rajendran, & Walters (arXiv 1203.2531)
Claim: Pretty Natural

ic Dipole Mom

Magnet

Dark Matter Mass (MeV)
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CDMS II
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CDMS II

Limited by ionization below 7 keVnr
To go down to 2 KeVnr; use phonon only and assume nr yield to compute Enr
Incompatible with original CoGeNT claim
CDMS not incompatible with 2 10-*! cm?/nucleon signal
In latest paper, CoGeNT collaboration does not claim any WIMP signal
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CDMS II

Limited by ionization below 7 keVnr
To go down to 2 KeVnr; use phonon only and assume nr yield to compute Enr
Incompatible with original CoGeNT claim
CDMS not incompatible with 2 10-*! cm?/nucleon signal

In latest paper, CoGeNT collaboration does not cli _ s

Collar& Fields: a signal in CDMS?

~
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ionization energy [keVeg]
(o))

Doing our own analysis L
No significant difference between e e
singles and multiples B
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CDMS II

Limited by ionization below 7 keVnr

To go down to 2 KeVnr; use phonon only and assume nr yield to compute Enr

Incompatible with original CoGeNT claim

CDMS not incompatible with 2 10-*! cm?/nucleon signal

In latest paper, CoGeNT collaboration does not cl

Collar& Fields: a signal in CDMS?

Doing our own analysis
No significant difference between
singles and multiples

No Modulation 5 keV-11.9 keV
nuclear recoil: arxiv:1203.1309
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http://arxiv.org/abs/1203.1309
http://arxiv.org/abs/1203.1309

What we are doing for SuperCDMS Soudan
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What we are doing for SuperCDMS Soudan

2 modes

* "Low Threshold" : we measure the phonon energy and correct for the
phonon emission from carrier drift in the electric field (Luke Neganov
Effect) with the ionization yield of a nuclear recoil (15% correction)

+ "CDMS Lite": take one or two detectors, apply 60V => measure the
ionization with the phonon => 100eV threshold
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What we are doing for SuperCDMS Soudan

2 modes

* "Low Threshold" : we measure the phonon energy and correct for the
phonon emission from carrier drift in the electric field (Luke Neganov
Effect) with the ionization yield of a nuclear recoil (15% correction)

+ "CDMS Lite": take one or two detectors, apply 60V => measure the
ionization with the phonon => 100eV threshold

in either case, no discrimination
rapidly background limited
=> result in coming
year
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What we are doing for SuperCDMS Soudan

2 modes

* "Low Threshold" : we measure the phonon energy and correct for the
phonon emission from carrier drift in the electric field (Luke Neganov
Effect) with the ionization yield of a nuclear recoil (15% correction)

+ "CDMS Lite": take one or two detectors, apply 60V => measure the
ionization with the phonon => 100eV threshold

in either case, no discrimination
rapidly background limited -
=> result in coming J
year 10 Eroficions ./OZ:;:;&: &

Oy, [cm?]
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What we are doing for CDMS SNOLAB
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What we are doing for CDMS SNOLAB

Working on phonons
Optimization with new SQUIDS (lower L=> lower Rtes)
Possibly working at lower Tc (sensitivity increase as Tc>—See below)
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What we are doing for CDMS SNOLAB

Working on phonons
Optimization with new SQUIDS (lower L=> lower Rtes)
Possibly working at lower Tc (sensitivity increase as Tc>—See below)

Working on ionization
FET-> HEMT :4K instead of 100K, 100uW instead of 5mW

+ lower white and 1/f noise: theoretically could reach 200eV FWHM if
detector leakage current is 1013

better system engineering (zpick up) + may be local amplification
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What we are doing for CDMS SNOLAB

Working on phonons
Optimization with new SQUIDS (lower L=> lower Rtes)
Possibly working at lower Tc (sensitivity increase as Tc>—See below)

Working on ionization
FET-> HEMT :4K instead of 100K, 100uW instead of 5mW

+ lower white and 1/f noise: theoretically could reach 200eV FWHM if
detector leakage current is 1013

better system engineering (zpick up) + may be local amplification

32x2 HEMT/JFET Comparison with High Resistance Feedback
10 IS T rrTTT T T T T T 11717 T T T T TTT

- [—32x2 HEMT

Noise at 1st Stage Output (V/rtHz)

10 10° 10 10
Frequency (Hz)
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How to improve the phonons for

coherent neutrino scattering?
Matt Pyle
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Transition Edge Sensor

with electro thermal feedback

* Superconducting film artificially
held within it’s transition
through voltage biasing

RL
* Resistance incredibly sensitive
to temperature change

I vs.time
tes

0.18} | C
0.16} Yeff = G(l n %)/

0.12} Weff = l/TCff

0 50 100 150 200
time (us)
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Athermal Phonon Detection Principles
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Athermal Phonon Detection Principles

Become insensitive to C ., ber

by collection and
concentration of Phonons
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Athermal Phonon Detection Principles

Become insensitive to C ., ber

by collection and
concentration of Phonons

More Complex

IV 4p~10°
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Athermal Phonon Detection Principles

Become insensitive to C ., ber

by collection and
concentration of Phonons

More Complex

Phonon Collection efficiencies
IV 4 g~100 (8)

Theoretical Max: ~40%
Best Measured: 20+4%
COMS IT: 1-4%
SuperCDMS <e>: ~12+3%

Active Research Area for
Stanford SuperCDMS
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Athermal Phonon Detection Principles

Become insensitive to C ., ber

by collection and
concentration of Phonons

More Complex

Phonon Collection efficiencies
IV 4 g~100 (8)

Theoretical Max: ~40%
Best Measured: 20+4%
COMS IT: 1-4%
SuperCDMS <e>: ~12+3%

Active Research Area for
Stanford SuperCDMS

Not New -> CDMS technology
(10+ yrs)
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CDMSII resolution
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0.4
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CDMSII resolution

Measured CDMS |l Phonon Resolution
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Etigger~60E: early CDMS Il Si detectors good enough for reactor CNS
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Detailed analysis -of SUF data

plot is combined Ge (upper panel) -
and Si (bottom panel) WIMP T ol
candidate event rates as a function 2
of recoil energy. >
g 10]
E 1
. 0.1
0.01

Bottom plot is ionization yield vs
recoil energy for unvetoed single
scatters for Ge (top panel, Z5 6 V)
and Si (bottom panel, Z4 3 V)

WIMP searches
From PHYSICAL REVIEW D 82, 122004 (2010)

lonization yield
o
o1

o
T

[
!

05¢F

Nearly good enougH!
Background a bit highl! ol

0.5 1 10 100
Recoil energy (keV)

lonization yield
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Can We Do Better?

o (FW/sqrt(hz))

Johnson Noise
— 4k, TR i
. . VB
Thermal Fluctuation Noise -
10’ Theoretical Power Noise for TES (NEP)
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Can We Do Better?

Matt: We can indeed!

Increase raw sensitivity
Match better TES (ETF) bandwidth to collection bandwidth
Prevent phase separation (a big loss in CDMS II/ SuperCDMS Soudan)

* Johnson Noise

G
— 4k, TR ; %
. . VB G
* Thermal Fluctuation Noise -
- 4kaZG | * Bathl

Theoretical Power Noise for TES (NEP)

10 ¢
' total o hies
_Rl 0.18
_R 016
10-|: tes .14
o B 02
= ERY
§ . , =" 0.8
‘5" -2 006
5 10 & E 0.4
E [ / 1 0.2
c / ' | e s0 o .l:.m; 150 200
«t | Electrothermal -
' Optimal Filter
o ,  4KT’C .
10~ poril o paepandl w o gan Og = x/ﬁ=>GE<xTC
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But large bandwith mismatch

Position and Total Energy Signals
have wildly different bandwidths

Optimization for both Impossible
* SuperCDMS: Choose Position

Energy/Z Position Pulse Shapes for Surlace Events

Energy/Z Position Pulse Shapes for Surface Events

—S1+82
—S182

Ve — 1 frpes—5khz
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But large bandwith mismatch

PhOﬂOﬂ CO"eCﬁOH Tim€>> TES Tim€>> ETF Time (phase separation)

* Position and Total Energy Signals
have wildly different bandwidths

* Optimization for both Impossible

* SuperCDMS: Choose Position

Energy/Z Position Pulse Shapes for Surlace Events Energy/Z Position Pulse Shapes for Surface Events
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Consequence
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Consequence

Noise® =power noise/ Collection bandwith
We gain as the cube of Tl

2
, _ 4KT’G 5
— — 0.8
O O c
rcoll
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Consequence

Noise® =power noise/ Collection bandwith
We gain as the cube of Tl

, _4KT’G
Of =

=g, x T

Tcol I

Furthermore: Lower Tc-> less phase separation!
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Consequence

Noise® =power noise/ Collection bandwith
We gain as the cube of Tl

2
of = 4T G =0, « T
T

coll

Furthermore: Lower Tc-> less phase separation!

In addition we can decrease G (and C) by decreasing length of the TES
(we can accomodate lower R with lower Lsquip)

L S e o
— * QP trapping in Al
I

“—_—== em

—Ld.i.ﬁN 180um

* Optimally use area near

\\y e
& * Not Possible in iZIP

detectors charge signal

;%’I capacitance constraints
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Baseline Energy Resolution Estimates

Resolution Scalings with Te (qu=255um)

2 I | ! 1 | | ' '
10 ‘
* Low Tc estimates
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|  effected by a(T)
2 & B(T,)
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) » Baseline
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0 Ge LZIP(new) Reso|ul'lon
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-===Si IZIP4/5 * Position
=eeslizibmew) I gystematicst
*  measured G3D
*  estimated G3D — SuperCDMS 3%
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Te (mK)
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Baseline Energy Resolution Estimates

Resolution Scalings with Te (Iq

| | | |
2
10
1
10
>
v
v‘-’
o
b
,/
// /
0 > 4 =
10 | / P
’
7’
- 3 ,/
/ /
y /"
’/
-1

=255um)

Ge LZIP(old)

Ge LZIP(new) |

Ge IZ1P4/5

====8Si 1ZIP4/5

“Si LZIP(new)
measured G3D

estimated G3D
measured G48
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Baseline
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— SuperCDMS 3%
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Possible stumbling blocks
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Baseline Energy Resolution Estimates

Resolution Scalings with Te (qu:ZSSum)
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Possible stumbling blocks
* Film quality C if we decrease T.
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Baseline Energy Resolution Estimates
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Opt( eV)
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Resolution Scalings with Te (qu=255um)
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* Film quality C if we decrease T.
* Film uniformity (How does alpha evolve)
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Baseline Energy Resolution Estimates

Resolution Scalings with Te (qu=255um)

| | | [ | >

2
10
* Low Tc estimates
n significantly
effected by a(T )
g & B(T,)
2 > S '+ Baseline
5 i A Ge LZIP{old) .
0 ceLzipmewy  Resolution
Gt 7. GelZIP4/5 s g
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7 o oUsilzibmew) 1 gystematics ?
V4% *  measured G3D
// estimated G3D — guppr(‘DMg 3%
1 ' ‘ ¥  measured G48
e 20 30 40 50 60 70 80 90 100
Te (mK)
Possible stumbling blocks
* Film quality C if we decrease T.
* Film uniformity (How does alpha evolve)
- Engineering : Fridge, low frequency noise, IR loading (goes as T°)
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Short Term Plans: Misfit Toys

e SI: not interesting for
standard high mass
WIMP search

 |on-Implant
e LDM?
« VN —>UN
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Short Term Plans: Misfit Toys

SuperCDMS throughput study

6 x 1" Si detectors in 3 weeks with
3FTE fab team

IMPRESSIVE!

e SI: not interesting for
standard high mass
WIMP search

 |on-Implant
e LDM?
« VN —>UN
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Can We Improve the Ionization

Measurement through Phonons?

Nader Mirabolfathi for:

Enectali Figueroa-Feliciano (MIT),
Matt Pyle (UCB), Kai Vetter (UCB,
LBNL), Paul Luke (LBNL), Marc
Amman (LBNL), Ryan Martin (LBNL),
Bernard Sadoulet (UCB, LBNL)
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Luke-Neganov

amplification

 Luke-Neganov Gain
| e =
Etot — Er + Eluke l:‘:hﬂ*T
= L + nenely TE
V e- e-e- &
€eh
*Phonon noise doesn’t scale with the 1onization bras
:> S/N ﬁ | P. Luke
E&A ) NIM A A289 (1990)
In theory one can increase - J
Biasto reach Poisson VFéE "
fluctuation limit:
fl mltaﬂ on: Ge Breakdown
Channel number
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Tonization breakdown with COMSII

« CDMSII 1 cm thick Ge detectors can’t handle much beyond 10
V/cm

 To keep ionization phonon discrimination CDM S limited to low
collection fields anyways => no interest for field > V/cm

* Need to neutralize detector: All impurity levels (p or n) at
neutral state to reduce trapping.

 Impact ionization on neutral states lead to breakdown?

* What if we charge all impuritieslike 77K depleted Ge gamma
spectrometers.

* Results from latest UCB tests.
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Point contact ionization detectors

* Main advantage low electrode
capacitance i.e. threshold.

 CoGeNT 440g smm PPC, 1 pF gate
capacitance

e 0,~ /0eV

e Threshold 0.4 keVee

* Transform lonization to Phonons: ol |
e Use very low thresnold phonon
detectors

counts / 0.125 keV 0.33 kg 56 days

ionization energy (keVee)
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Alternative: Point contact phonon
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Alternative: Point contact phonon

Use the same principle as point contact but

Very low temperature: No Carrier
generation.

< 4K the impurity charge status will
freeze.

Need to deplete the detectors at 77K
and cool!

Depleted => All impurities charged.
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Alternative: Point contact phonon

Use the same principle as point contact but

Very low temperature: No Carrier
generation.

< 4K the impurity charge status will
freeze.

Need to deplete the detectors at 77K
and cool!

Depleted => All impurities charged.
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Recent tests at Berkeley

=20 mm, h=10 mm p-type Ge: 10!° cm3

Could deplete at 180 Volts at 77K and cool to 0.05 K
Detector maintained depleted state down to 0.05 K
Tonization calibration with Ba-133 source

Point Contact Detector - UCB R438
T T T

Res. 356 keV peak: FWHM = 6.8 keV
300
140 T T .
120 7 250 ||
100 200
80r | £ 5 : : f :
o R
60 1 O | | _ . :
40t | | .
0 . ! 1 I h"'ﬂ-ﬁﬂ"_l- 0 i | i | L
340 345 350 355 360 365 370 100 150 200 250 300 350 400

Enerav TkeVl Enerav TkeV1

Not very good resolution
baseline= 1keV (badly adapTed Cconnect+CFET)

[ ]
llh alalalall-lsaWa ) n‘ NQ L ) (] 2,
\ & 4 -w -w - -w
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A tungsten (T .~65 mK)

thermometer glued: Only
sensitive to thermal phonons.

Currently running with internal
“tAm source; 10 to 60 keV

Study the Neganov-Luke gain
Study near surface (dead layer)

—
2~
L
en
e
e
o
e
o
s )
-

Coherent Neutrino Scattering 12/07/12 29 B.Sadoulet

Friday, December 28, 12



Near surface events: Ionization dead-layer

Near surface cause:

* Back diffusion to the wrong electrode. [
e Self shielding of the initial e-h cloud
* How bad for recoils <<1 keV ??

* Need to be studied

 Trapping on the surface states.

* One can engineer the size of the point

contact such that:

* Field near the phonon surface ~ Volts/cm.

e Use the same concept as i ZIP.

e Magjority of phonons released in the vicinity of the
point contact.

« Use Phonon partition to select only center events.

e Can aso cover the cylindrical

surface:
 EDELWEISS FIDs.

Phonon TES rails Charge electrode

S—
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Advantage: No Position dependence
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Advantage: No Position dependence

Majority of athermal phonon emitted from a
small region around the point contact.

Fiducial volume events: Most phonons from ~ 1 cm?
around point contact where the field is strong.

The same principle can be used to identify deadlayer
evenst.
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Advantage: No Position dependence

Majority of athermal phonon emitted from a
small region around the point contact.

Fiducial volume events: Most phonons from ~ 1 cm3
around point contact where the field is strong.

The same principle can be used to identify deadlayer
evenst.
Disadvantage:
Basically ionization measurement.

Low ionization yield ~1/10 at the region of interest.
But very good o should compensate?

No event-by-event discrimination: Requires a very good
understanding of the backgrounds.
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Conclusions
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Conclusions

Noise improvement:

1-100eV Ejyigqer Seem technically possible

T.3 scaling for athermal phonon detectors
Improved cold/warm electronics
Optimize detector design

R&D Challenges Remain
W FILM QUALITY
6 Si iZIPs -> hoping to be the first group to study CNS
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Conclusions

Noise improvement:

1-100eV Ejyigqer Seem technically possible

T.3 scaling for athermal phonon detectors
Improved cold/warm electronics
Optimize detector design

R&D Challenges Remain
W FILM QUALITY
6 Si iZIPs -> hoping to be the first group to study CNS

Signal improvement:
Can deplete and operate Point contact Ge detectors at very low temperatures

Phonon response improves linearly with collection potential while phonon noise is
independent.

Can reach ultimate Poisson fluctuation limit.
R&D challenges:

Near surface events.
Larger detector and the regions of low electric field.
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