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§  The need to characterize detector materials 
§  Mechanisms for producing nuclear recoils 
§  Considerations for experimental design 
§  Two experimental designs for LAr  

•  Collimated & filtered 7Li(p,n)7Be 
•  Nuclear resonance fluorescence (NRF) 
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We need to characterize detector 
materials 
§  We must understand the 

response of detector 
materials to the CNNS 
signal 
•  Validation of candidate 

materials 
•  Detector response functions 
•  Appropriate scaling of 

detectors  
•  Backgrounds 

Average recoil energy for several neutrino 
energies (eV) 

  1.44 MeV 5 MeV 30 MeV 

Si 50 640 23000 
Ar 35 450 16000 
Ge 20 250 9000 
Xe 10 130 4700 
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CNNS acts on the nucleus and so 
must we 

Traditional 
•  Neutron scatter 
—  Mono-energetic 
—  Filtered 
—  TOF 
—  Tagged 
—  End-point 
—  Spectrum 

•  Radiative capture 
—  Thermal neutron source 
—  Cooperative nuclear structure 

•  Inelastic neutron scatter 
—  Shoulder on gamma peak 

Non-traditional 
•  Photo-nuclear scatter 
—  Rayleigh 
—  Delbruck 
—  Thomson  
—  NRF 

•  Charged particle scatter 
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§  Target nuclei and neutrino source define energy range 

§  Separate detectors likely built for material 
characterization 
•  Deployed detectors require comprehensive shielding 
•  Characterization detectors need radiation to penetrate 

§  Characterization must compliment detector design 
•  Cross-sections, attenuation, multiple scattering, etc… 

§  Different detector technologies, different geometries, 
different concerns 
•  Self shielding, room returns, etc… 

There is no silver bullet 
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Two experiments for our LAr 
detector 

§  7Li(p,n)7Be, collimated & 
filtered 
•  Exploiting near-threshold 

kinematics 
•  Utilizing “interference 

notches” in (n,el) cross-
sections 
—  Barbeau et al. NIMA 2007 

•  73 keV & 24 keV neutrons 
•  End-point and tagged 

§  Nuclear Resonance 
Fluorescence (NRF) 
•  Several candidate states in 

40Ar 
•  Sub-keV accessible in detail 
—  T.H.Y. Joshi NIMA 2011 



Lawrence Livermore National Laboratory LLNL-PRES-705033DRAFT 
7 

7Li(p,n)7Be near-threshold kinematics 

Proton Energy Countours for a Thick Lithium Target
from Lee and Zhou NIMB 152 (1999)
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Using near-threshold kinematics we  
can control maximum neutron energy 

Taking advantage of nuclear data 
we selectively transmit neutrons through 
interference dips in scattering x-sections 

The 73 keV notch in 56Fe was selected 
to target the lower energy portion of the  
(n,el) resonance in 40Ar 
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Expected thick Li performance 
1.93 MeV protons at 1 µA 

Dip in 73 keV transmission is a  
result of scattering by 54Fe Thin Li target would further improve this design 



Lawrence Livermore National Laboratory LLNL-PRES-705033DRAFT 
9 

Expected thick Li performance 
1.93 MeV protons at 1 µA 

Without filtering near-threshold reaction combined with angular tuning can produce 
a ‘shoulder’ but multiple scattering and detector response make this undesirable 

0 2 4 6 8 10 12 14 16 18 20 22

1

10

Collimator at 40 degrees
Collimator at 45 degrees
Collimator at 50 degrees
Dashed lines - No filter
Solid lines - 7 cm Fe & 0.75 cm Ti filter

Neutron energy deposition in active LAr

ev
en

ts/
10

0 
eV

/se
c

energy deposition (keV)



Lawrence Livermore National Laboratory LLNL-PRES-705033DRAFT 
10 

Collimating/filtering setup deployed 
at CAMS 
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Photo-nuclear scatter 
as a source of nuclear recoils 
§  Act like a neutrino 

•  Neutral 
•  Massless 
•  1-10 MeV – Similar to reactor 

neutrinos 

§  Utilize resonant absorption to 
access benefits of photo-nuclear 
scatter (NRF) 
•  Cross-sections are very large 
•  Resonantly scattered gammas can be 

tagged in spectrometers 

§  Photo-nuclear scatter (Delbruck, 
Rayleigh, Tompson) 
•  Much smaller cross-sections 
•  Could be viable for higher Z nuclei 

30-150 degree photonuclear recoil 
energies (eV) 

3 MeV 6 MeV 9 MeV 
Si 46-640 180-2600 415-580 
Ar 32-450 130-1800 290-4000 
Ge 18-250 72-1000 160-2200 
Xe 10-130 40-530 85-1200 



Lawrence Livermore National Laboratory LLNL-PRES-705033DRAFT 
12 

NRF as a source of nuclear recoils 
ϒresonant 

Precoil: absorption 

ϒfluoresced 

Precoil: absorption 

θ 

€ 

E(γ fluoresced ) ≈ E(γ resonant )

E(recoiltotal ) ≈ 2Sin[θ
2

]2 Eγ
2

Mc 2



Lawrence Livermore National Laboratory LLNL-PRES-705033DRAFT 
13 

Identifying appropriate states 
§  Transition energy  

•  3-10 MeV 

§  E1 (or M1) transition  

§  Branching to G.S. 
•  ~100%  

§  Short lifetime / large width 
•  τ = ħ / Γ 

§  No or few neighboring states 

§  Width of the resonance, Γ 
•  At least 1 lifetime before scatter 

on neighboring atom 
•    

4.769 MeV 9.503 MeV 
Jπ 1- 1- 
Γ 0.82 eV 7.9 eV 

G.S. Branch 100% 89% 
τ 5.04 fs 0.52 fs 

vrecoil 0.38 Å/fs 0.77 Å/fs 
S/B 3 730 
σ 405 eV barn 

 
587eV barn 
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Probing the sub-keV in Argon 
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Fission neutrino regime can be 
characterized 

Hagmann and Bernstein. IEEE Trans. on Nucl. Sci., 51, 2151, 2004. 

Argon nuclear recoil spectra from fission ν’s  
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§  Required to identify an event and recoil energy 
•  Require moderate energy resolution 
•  Reasonable stopping power to increase efficiency 

§  False triggers and backgrounds will be low (at 
reasonable angles) 
•  Fluoresced gammas have incident gamma energy 
•  Compton scatters are very forward peaked at MeV energies 
•  Compton scattered photons are well below beam energy 
•  Collimating the field of view can reduce pileup and elastic photon 

scatters from inactive regions 

Gamma-tagging is needed to identify 
events 
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High Intensity Gamma-ray Source 
§  Duke Free Electron Laser 

Laboratory 

§  γ-Production: Compton 
backscatter 

§  Commissioned in 2007 

§  Polarization: horizontal and 
circular 

§  High Resolution Mode 
•  Two asymmetric e- bunches 
•  ~1% Energy resolution 
•  ~2x105 γ/sec at 4.769 MeV 

•  2.79 MHz collision frequency 
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§  Experimental facilities are limited 

§  Backgrounds and noise 
•  With current high energy photon sources the majority of incident 

photons are non-resonant 
•  High rate of high energy Compton and Pair Production 
•  Identification of these high energy events is easy, recovering 

quickly is difficult and  

§  Gamma-tagging array 

Experimental challenges of NRF 
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§  Producing controlled nuclear recoils in sensitive 
detectors is necessary to characterize CNNS target 
materials 

§  There are many ways to produce nuclear recoils, 
finding the best approach for your detector 
technology may not be immediately obvious 

§  We have proposed NRF as a source of sub-keV 
nuclear recoils in Argon 

§  We have designed and built a collimated & 
filtered 7Li(p,n) neutron source – currently being 
characterized  

Conclusions 
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§  Characterize 7Li(p,n)7Be neutron source with 
new thin Li target 

§  Measure ionization yield of few keV nuclear 
recoils in liquid argon 

§  Pursue possible application of the NRF 
technique for argon and other targets 

Future Work 
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§  Si-diode detector 
mounted on translation 
stage 

§  226Ra source mounted 
across from detector 

§  Calibrated detector 
immediately before and 
after measurement of 
proton beam 

Verifying accelerator calibration 
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§  Measured very low 
current of protons at 
CAMS with calibrated Si-
detector 

§  Observed 15 keV offset 
in terminal potential of 
accelerator 

Correcting the terminal potential 
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