### TOWARDS PRECISION MEASUREMENTS

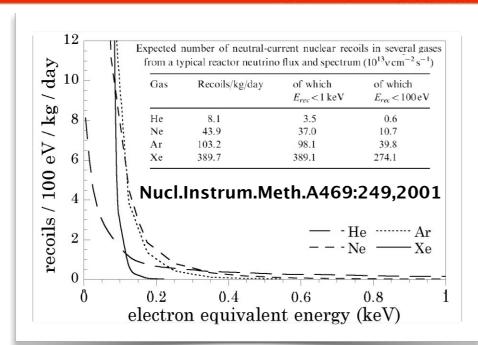
OF



COHERENT SCATTER CROSS-SECTIONS

PHIL BARBEAU STANFORD UNIVERSITY

### WHAT DO WE MEAN BY "PRECISION"


### A one-page tutorial on coherent v-N scattering

- Uncontroversial Standard Model process
- Large enhancement in cross-section of for E<sub>V</sub> < few tens of MeV ( $\sigma \propto N^2$ , possible only for new  $\sigma$  user
- However, not has been mis

Detector (reactor experiment) and the last of the last

(low-E recalls lose only 10-20% to ionization or scintillation)

 Cryogen c bolometers and other methods proposed, no successful implementation yet

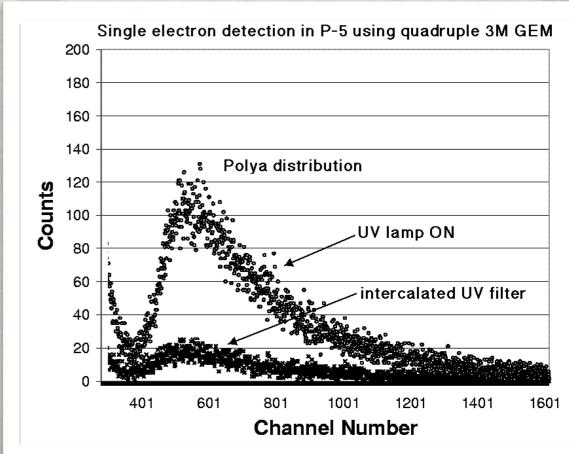


#### **aundamental** physics:

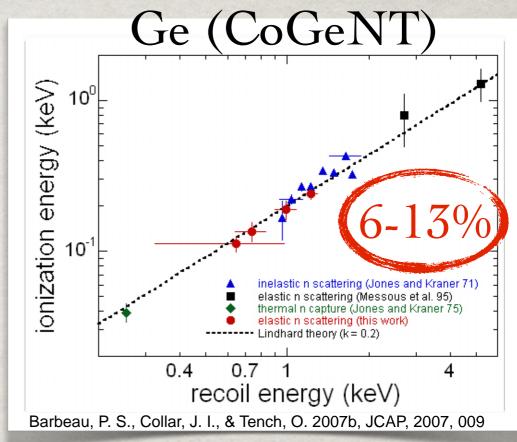
- measured to validate models (J.R. Wilson, PRL 32 (74) 849)
  - large detector can measure total E and T of ⇒ determination of wascillation
- ertern or mass of v star (J.F.Beacom, W.M.F. & P.Vogel, PRD
- Coherent σ same for all known v...
   oscillations observed in a coherent detector
- ⇒ evidence for V<sub>sterile</sub> (A.Drukier & L.Stodolsky, PRD 30 (84) 2295)
- Sensitive probe of weak nuclear charge
- ⇒ test of radiative corrections due to new physics above weak scale (L.M.Krouss, PLB 269, 407)
- More sensitive to NSI and new neutral bosons than v factories. Also effective v charge ratio
  (J. Barranco et al. hep-ph/0508299,hep-ph-0512029
- or critically depends on  $\mu_V$ : observation of SM prediction would increase sensitivity to  $\mu_V$  by an order of magnitude (ACDodd et al. PLB 266 (91) 34).

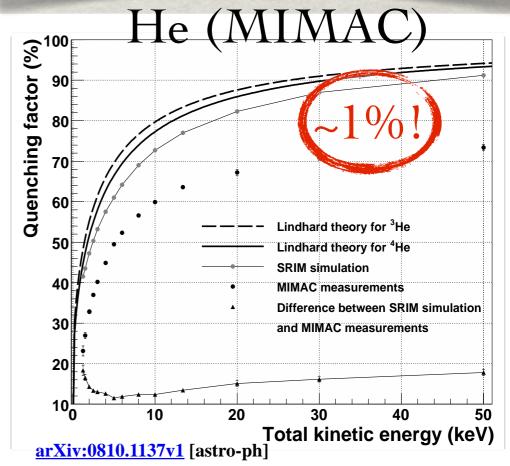
#### Smallis detectors... "v technology"?

- Monitoring of nuclear reactors against illicit operation or fuel diversion: present proposals using conventional 1-ton detectors reach only > ~3 GWt reactor power
- Geological prospection, planetary tomography...
   the list cats much wilder


### LOW HANGING FRUIT?

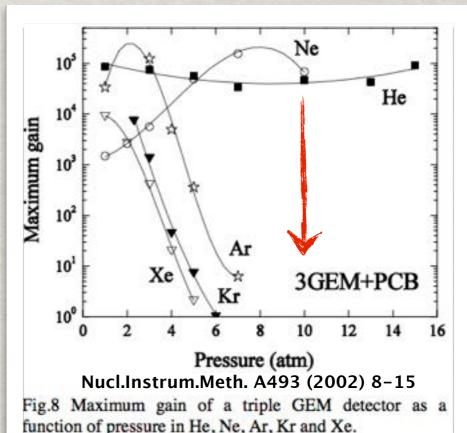
Not with scheme proposed here \*\* NC sterile | search \* Coherent scattering μ search \*\* Test Qw radiative corrections **\*\*** NSI 


cross-sections Light Wimps

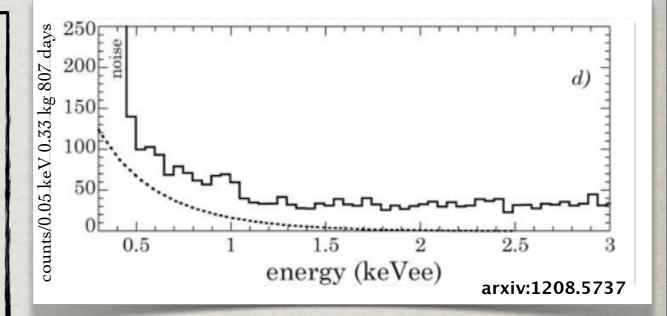

- \*\* Identical detector construction for all targets (controls systematics)
- Continuously re-purify
- Low thresholds: single electron sensitivity for ~1-10 Bar
- \* High Precision quenching factor measurement
- \* Target Masses (~kg/m³)
- \*\* Standard drift gas targets: H<sub>2</sub>, <sup>3,4</sup>He, <sup>10,11</sup>BF<sub>3</sub>, <sup>12,13,14</sup>CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>4</sub>H<sub>10</sub>... CF<sub>4</sub>, <sup>32,34</sup>SF<sub>6</sub>, CO<sub>2</sub>, <sup>20,22</sup>Ne, N<sub>2</sub>, <sup>82,83,84,85,86</sup>Kr, <sup>39,40</sup>Ar, <sup>129-132,134,136</sup>Xe
- \*\* Low backgrounds: <sup>222</sup>Rn @EXO, n & y @CoGeNT.






- \*\* Identical detector construction for all targets (controls systematics)
- Continuously re-purify
- Low thresholds: single electron sensitivity for ~1-10 Bar
- \* High Precision quenching factor measurement
- \* Target Masses (~kg/m³)
- \*\* Standard drift gas targets: H<sub>2</sub>, <sup>3,4</sup>He, <sup>10,11</sup>BF<sub>3</sub>, <sup>12,13,14</sup>CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>4</sub>H<sub>10</sub>... CF<sub>4</sub>, <sup>32,34</sup>SF<sub>6</sub>, CO<sub>2</sub>, <sup>20,22</sup>Ne, N<sub>2</sub>, <sup>82,83,84,85,86</sup>Kr, <sup>39,40</sup>Ar, <sup>129-132,134,136</sup>Xe
- \*\* Low backgrounds: <sup>222</sup>Rn @EXO, n & y @CoGeNT.






- \*\* Identical detector construction for all targets (controls systematics)
- Continuously re-purify
- \*\* Low thresholds: single electron sensitivity for ~1-10 Bar
- \* High Precision quenching factor measurement
- \*\* Target Masses (~kg/m³)
- \*\* Standard drift gas targets: H<sub>2</sub>, <sup>3,4</sup>He, <sup>10,11</sup>BF<sub>3</sub>, <sup>12,13,14</sup>CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>4</sub>H<sub>10</sub>... CF<sub>4</sub>, <sup>32,34</sup>SF<sub>6</sub>, CO<sub>2</sub>, <sup>20,22</sup>Ne, N<sub>2</sub>, <sup>82,83,84,85,86</sup>Kr, <sup>39,40</sup>Ar, <sup>129-132,134,136</sup>Xe
- \*\* Low backgrounds: <sup>222</sup>Rn @EXO, n & y @CoGeNT.





- \*\* Identical detector construction for all targets (controls systematics)
- Continuously re-purify
- \*\* Low thresholds: single electron sensitivity for ~1-10 Bar
- \* High Precision quenching factor measurement
- \* Target Masses (~kg/m³)
- \*\* Standard drift gas targets: H<sub>2</sub>, <sup>3,4</sup>He, <sup>10,11</sup>BF<sub>3</sub>, <sup>12,13,14</sup>CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>4</sub>H<sub>10</sub>... CF<sub>4</sub>, <sup>32,34</sup>SF<sub>6</sub>, CO<sub>2</sub>, <sup>20,22</sup>Ne, N<sub>2</sub>, <sup>82,83,84,85,86</sup>Kr, <sup>39,40</sup>Ar, <sup>129-132,134,136</sup>Xe
- \*\* Low backgrounds: <sup>222</sup>Rn @EXO, n & γ @CoGeNT.



<sup>222</sup>Rn in EXO-200 (continuously circulating): 4.6 μBq kg<sup>-1</sup>  $\rightarrow$  ~0.01-0.1 c keV<sup>-1</sup> kg <sup>-1</sup> d<sup>-1</sup>

 $^{85}$ Kr in Xe: < ~ $10^{-3}$  - 0.5 c keV<sup>-1</sup> kg  $^{-1}$  d<sup>-1</sup>

 $^{222}$ Rn daughters on SNO NCD surfaces:  $^{222}$ Rn  $^{-2}$  d<sup>-1</sup> →  $^{22}$  c keV<sup>-1</sup> kg  $^{-1}$  d<sup>-1</sup>

 $^{14}$ C @ Borexino levels (measured in CH<sub>4</sub>):  $^{14}$ C/ $^{12}$ C <  $10^{-18}$  → < ~0.15 c keV<sup>-1</sup> kg  $^{-1}$  d<sup>-1</sup>

 $^{39}$ Ar in Ar @ ~ 15 - 300 c keV<sup>-1</sup> kg <sup>-1</sup> d<sup>-1</sup>

CoGeNT backgrounds (0.5-3 keV) 2.6 - 7.4 c keV<sup>-1</sup> kg d<sup>-1</sup>

- \*\* We now know  $M_{top}$  and  $M_{Higgs} \rightarrow$  uncertainties on radiative corrections are small
- Remaining hadronic uncertainties similar to those from APV experiments (~0.2%) (L. M. Krauss, PLB 269, 407)

$$Q_w = N - (1 - 4\sin^2\theta_w)Z$$



Measure Qw with coherent  $\square$  scattering at nuclear reactor (SONGS ~ $10^{13}$   $\square$  cm<sup>-2</sup> s<sup>-1</sup> & 30 m.w.e)

Deviations → new Physics

$$\begin{split} &\frac{d\sigma}{dT_{coh}} = \frac{G_f^2 M}{2\pi} ((G_V + G_A)^2 + (G_V - G_A)^2 (1 - \frac{T}{E_{\nu}})^2 - (G_V^2 - G_A^2) \frac{MT}{E_{\nu}^2}) \\ &G_V = ((g_v^p + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV})Z + (g_v^n + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV})N) F_{nucl}^V(Q^2) \\ &G_A = ((g_a^p + 2\epsilon_{ee}^{uA} + \epsilon_{ee}^{dA})(Z_+ - Z_-) + (g_a^n + \epsilon_{ee}^{uA} + 2\epsilon_{ee}^{dA})(N_+ - N_-)) F_{nucl}^A(Q^2) \\ &g_V^p = \rho_{\nu N}^{NC} (\frac{1}{2} - 2\hat{\kappa}_{\nu N} sin^2 \theta_w) + 2\lambda^{uL} + 2\lambda^{uR} + \lambda^{dL} + \lambda^{dR} \\ &g_V^n = -\frac{1}{2} \rho_{\nu N}^{NC} + \lambda^{uL} + \lambda^{uR} + 2\lambda^{dL} + 2\lambda^{dR} \end{split}$$

+ axial vector factors which have more theoretical uncertainty (strong quark contributions, weak magnetism term, effective neutrino charge radii)

- 0) Use gas targets (swappable) to control fiducial volume systematics
- 1) Low q<sup>2</sup> @ Rx to avoid F(Q<sup>2</sup>) theoretical systematics
- 2) eliminate axial couplings along with their (larger) uncertainties
- → Choose even-even nuclei

| $H_2$                               | 32,34SF <sub>6</sub> |
|-------------------------------------|----------------------|
| <sup>3,4</sup> He                   | $CO_2$               |
| $^{10,11}{ m BF}_{3}$               | <sup>20,22</sup> Ne  |
| <sup>12,13,14</sup> CH <sub>4</sub> | $N_2$                |
| $C_2H_6$                            | 82,83,84,85,86Kr     |
| $C_4H_{10}$                         | 39,40Ar              |
| CF <sub>4</sub>                     | 129-132,134,136Xe    |

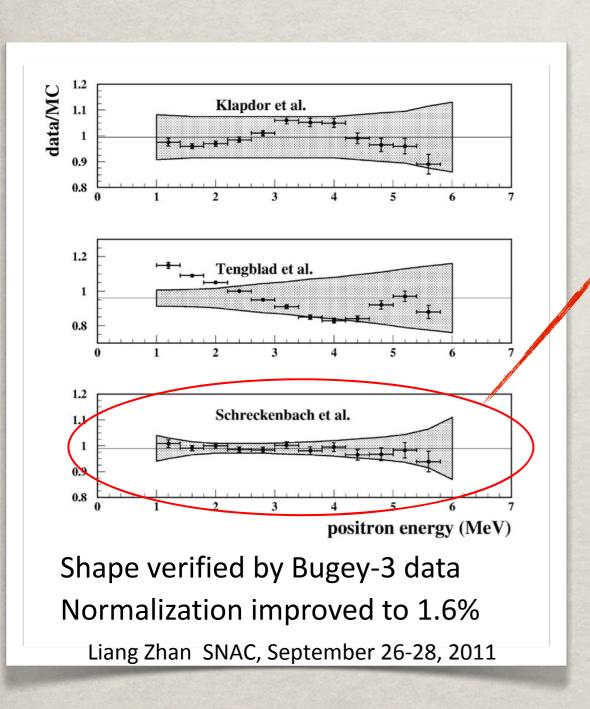
3) Factorize out [ flux (~6%) & absolute rate uncertainties

 $\rightarrow$  group according Z=N & Z\neq N & measure ratio:  $\frac{R_{Z=N}}{R_{Z\neq N}}$ 

$$Q_{w,^4He} = 2 \times 4sin^2\theta_w$$

$$Q_{w,^{12}C} = 6 \times 4sin^2\theta_w$$

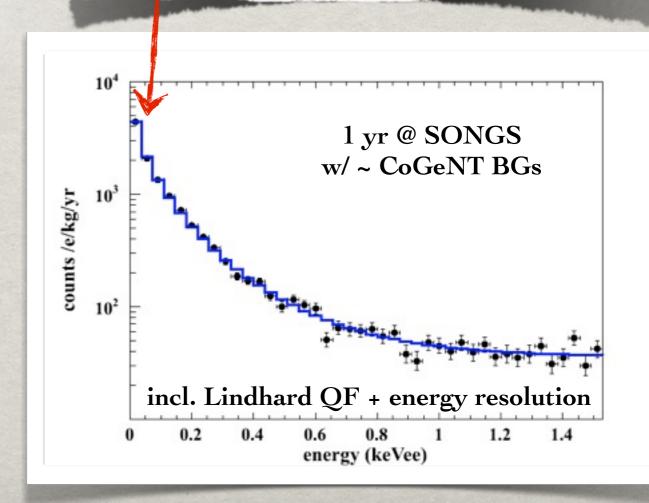
$$Q_{w,^{16}O} = 8 \times 4sin^2\theta_w$$


$$Q_{w,^{20}Ne} = 10 \times 4sin^2\theta_w$$

$$Q_{w,^{22}Ne} = 2 + 10 \times 4\sin^2\theta_w$$
  
 $Q_{w,^{40}Ar} = 4 + 18 \times 4\sin^2\theta_w$   
 $Q_{w,^{136}Xe} = 28 + 54 \times 4\sin^2\theta_w$ 

$$Q_w = N - (1 - 4\sin^2\theta_w)Z$$

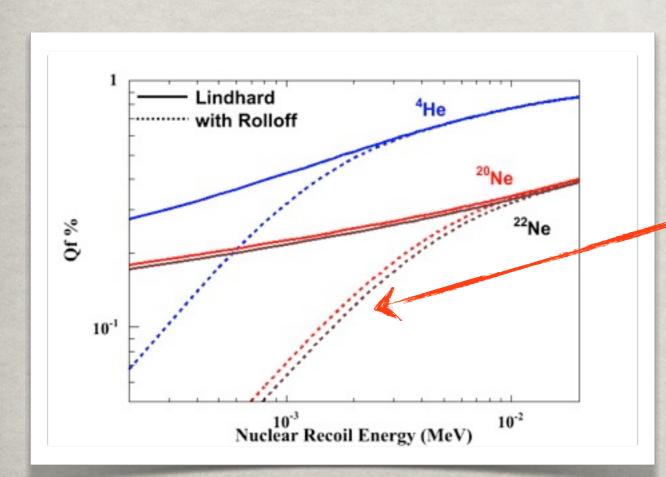
## Pu 239 and Pu 241 fission by WEAK NUCLEAR CHARGE


4) Use  $A_1 \sim A_2$  nuclei to minimize impact of neutrino spectrum uncertainties  $\rightarrow$  20, 22 Ne



Recoil energy:  $T_{max} = 2E_{\square}/M$ 

Choose recoil thresholds (10% change between <sup>20,22</sup>Ne) to select same population of □ energies (spectral uncertainties factorize out)


Introduces <0.1% uncertainty due to discrete nature of the recorded signal (single e-'s) @ threshold.



4.5) Using same element (Ne) eliminates atomic effects on the quenching factor

impact of 1% Q(E<sub>rec</sub>) uncertainty & threshold

| Threshold (e-'s) | Systematic impact (%) |
|------------------|-----------------------|
| 0                | 0.1%                  |
| 1                | 0.4%                  |
| 2                | 0.6%                  |
| 3                | 0.8%                  |



If we measure the Ratio of the Quenching Factor in  $^{20,22}$ Ne to  $\sim 1\%$ , then the systematics are manageable

From Lindhard, this kinematic change comes in as:

$$f_n \sim \frac{1}{A^{\frac{1}{2}} + 1} \times (1 - e^{\frac{-E_r}{E_t}}), \quad E_t \sim A$$

Should be able to predict the difference; but should still measure that it is non-zero. Can test ratio with other targets <sup>3,4</sup>He.

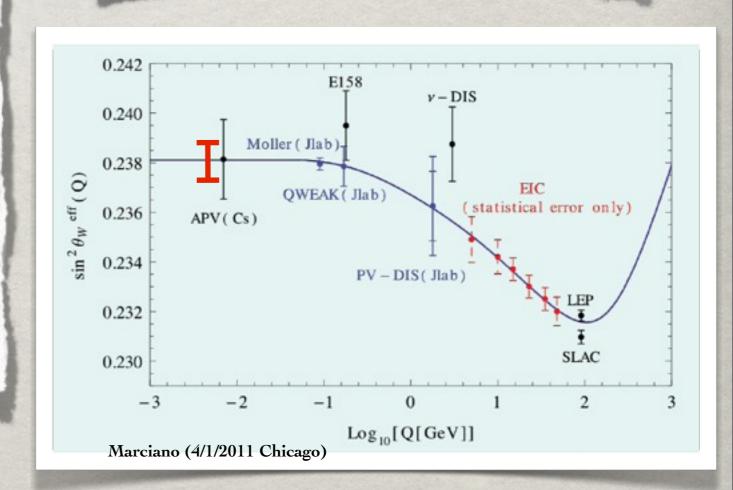
Statistical uncertainty from backgrounds dominate.

 $\rightarrow$  Need Rx-off time

Run for 4.5 cycles at SONGS. 1 cycle = 18 mo. On, 1 mo. Off (When they are operating normally)

Operate in both Tendon Galleries to maximize Rx off time.

 $\rightarrow$  2 x 20 kg detectors at ~ 1-10 Bar


Result  $\rightarrow$  uncertainties on  $\sin^2 \square_w$ : ±0.22% (stat.) ±[0.1-0.4]% (sys.) ± <0.2 (th.)

Gives us another neutrino test, at lower Q.

Ignoring radiative corrections

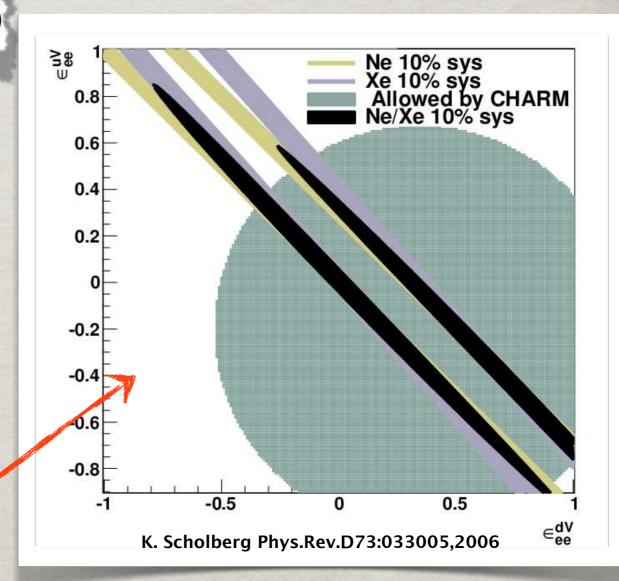
$$R(\frac{^{22}Ne}{^{20}Ne}) = \frac{(2+10\times sin^{2}\theta_{w})^{2}}{(10\times sin^{2}\theta_{w})^{2}}$$

$$\sigma(\sin^2\theta_w) = 0.57 \times \sigma R$$



### (NON-UNIVERSAL) NSI SEARCH

### \* Essentially, the same game as the before


$$\frac{d\sigma}{dT_{coh}} = \frac{G_f^2 M}{2\pi} = G_V^2 (1 + (1 - \frac{T}{E_\nu})^2 - \frac{MT}{E_\nu})$$

$$G_V = ((g_v^p + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV})Z + (g_v^n + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV})N)F_{nucl}^V(Q^2)$$

Including radiative corrections, and earlier stat. & sys. uncertainties, the ratio for <sup>20</sup>Ne/<sup>22</sup>Ne gives:

$$1.0345 \pm 0.0202 = \frac{-0.512 + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV}}{-0.495 + 3\epsilon_{ee}^{uV} + 3\epsilon_{ee}^{dV}}$$

Makes for interesting constraints here (not yet drawn)



### NSI SEARCH

While we are at it, lets not forget that this scheme is information rich

- → H<sub>2</sub>, CH<sub>4</sub> (very distinctive spectrum) and CF<sub>4</sub> (unpaired protons)
- → <sup>3</sup>He (unpaired neutron), D<sub>2</sub> (unpaired neutron and proton) □ Can't decide which is crazier
- $\rightarrow$  BF<sub>3</sub> (unpaired neutron and proton).
- → Varying weak magnetism effect.

$$\frac{d\sigma}{dT_{coh}} = \frac{G_f^2 M}{2\pi} ((G_V + G_A)^2 + (G_V - G_A)^2 (1 - \frac{T}{E_\nu})^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2})$$

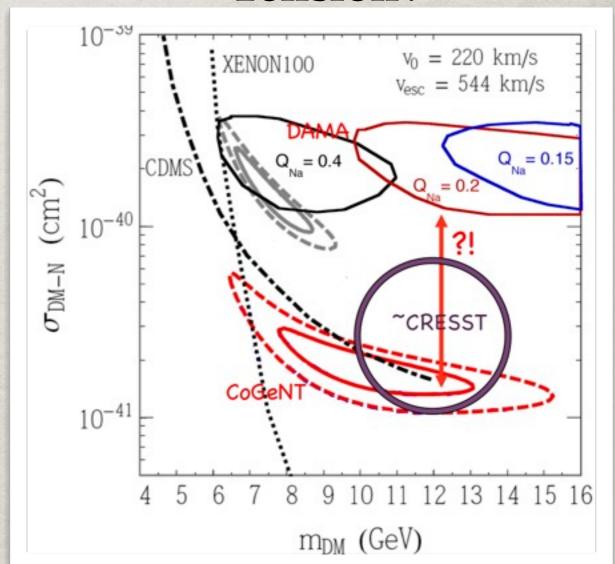
$$G_V = ((g_v^p + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV}) Z + (g_v^n + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV}) N) F_{nucl}^V(Q^2)$$

$$G_A = ((g_a^p + 2\epsilon_{ee}^{uA} + \epsilon_{ee}^{dA}) (Z_+ - Z_-) + (g_a^n + \epsilon_{ee}^{uA} + 2\epsilon_{ee}^{dA}) (N_+ - N_-)) F_{nucl}^A(Q^2)$$

$$g_V^p = \rho_{\nu N}^{NC} \left(\frac{1}{2} - 2\hat{\kappa}_{\nu N} \sin^2 \theta_w\right) + 2\lambda^{uL} + 2\lambda^{uR} + \lambda^{dL} + \lambda^{dR}$$

$$g_V^n = -\frac{1}{2}\rho_{\nu N}^{NC} + \lambda^{uL} + \lambda^{uR} + 2\lambda^{dL} + 2\lambda^{dR}$$
 + pesky axial couplings

## Light WIMPS


Or, what else can you use these detectors for ...?

Deploy a number of similarly built detectors, with much larger variance in A.

Use the kinematics of WIMP-nucleus scattering to test putative signals.

| $H_2$                               | <sup>32,34</sup> SF <sub>6</sub> |
|-------------------------------------|----------------------------------|
| <sup>3,4</sup> He                   | $CO_2$                           |
| $^{10,11}{ m BF}_3$                 | <sup>20,22</sup> Ne              |
| <sup>12,13,14</sup> CH <sub>4</sub> | $N_2$                            |
| $C_2H_6$                            | 82,83,84,85,86Kr                 |
| $C_4H_{10}$                         | <sup>39,40</sup> Ar              |
| CF <sub>4</sub>                     | 129-132,134,136Xe                |

### **Tension?**




## Light WIMPS

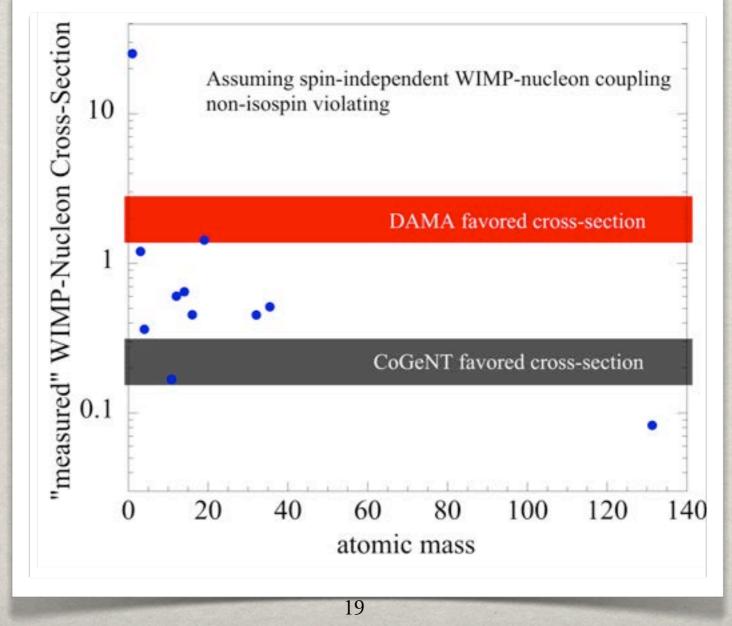
Fit characteristic energy scale of any observation versus target mass, increases the precision on putative WIMP mass

→ kinematic check against certain (neutron) background hypotheses

Amplitude of spectra indicates WIMP escape velocity

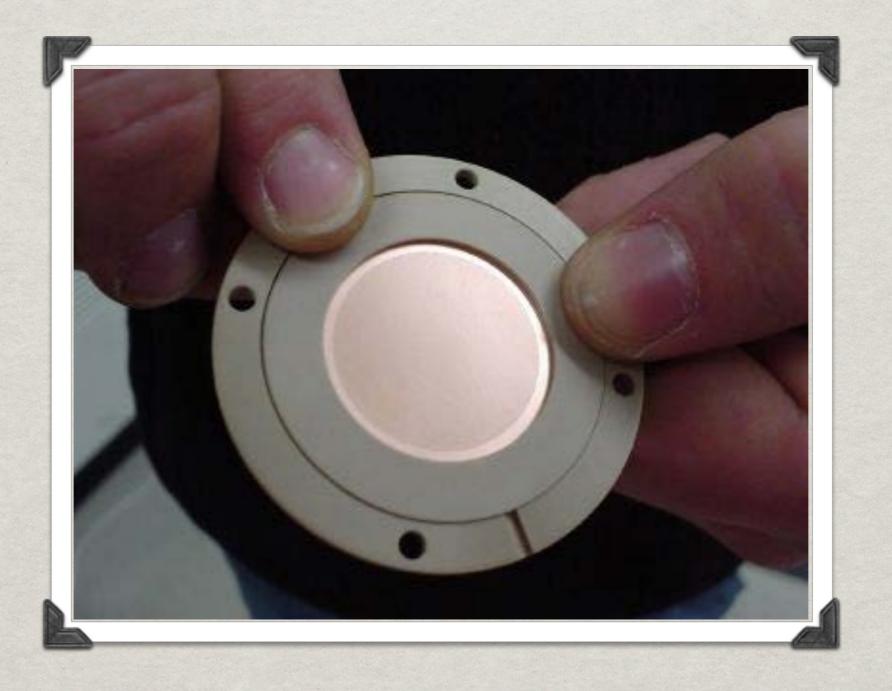
→ ascertain/factorize astrophysical systematic (Streams, etc.)



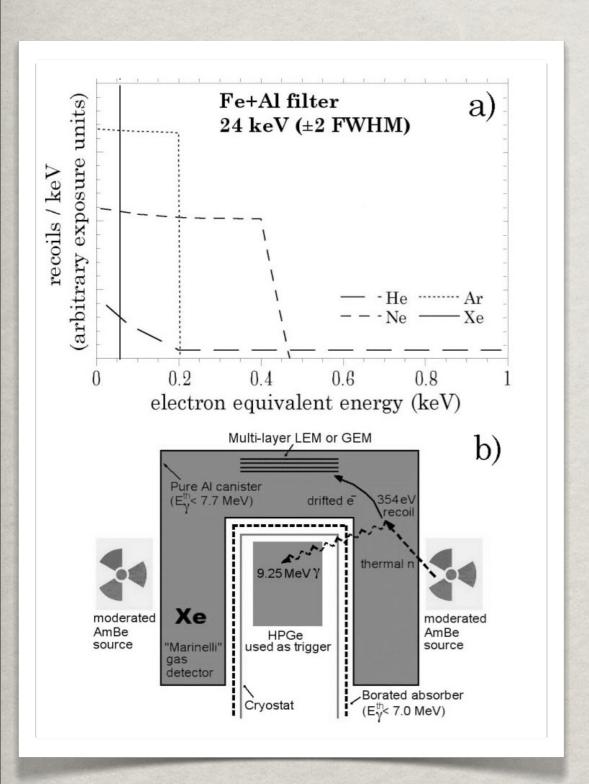

## Light WIMPS

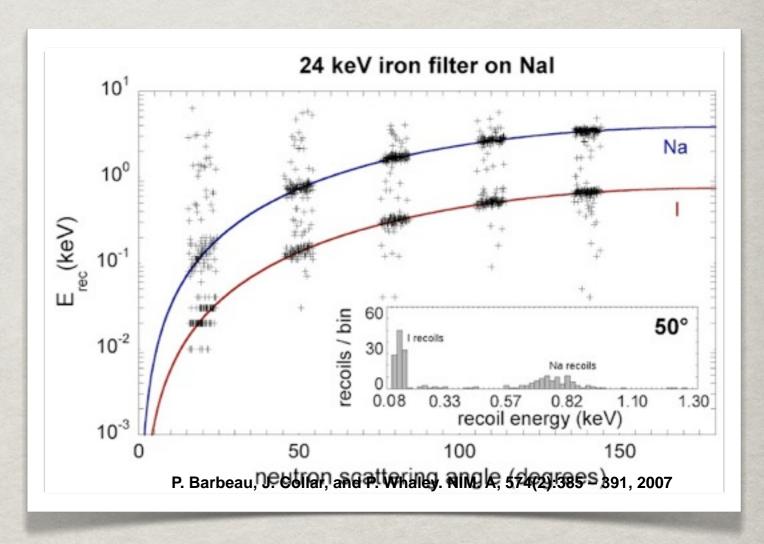
Study cross-section versus target mass.

- → Search for (neutron) background systematic
- → Characteristic coherence signal


Cross-section cancelations can occur if we have isospin-violating WIMP interactions.

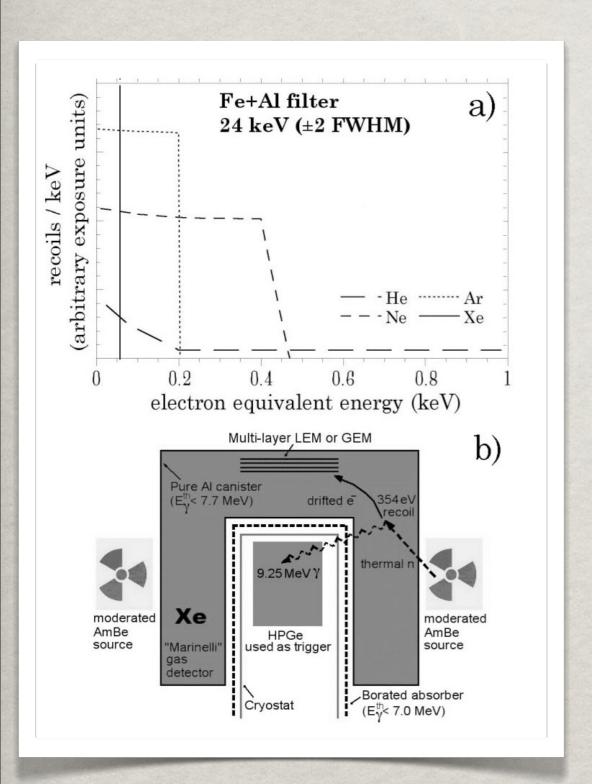
→ Factorize out Particle Physics Systematic.

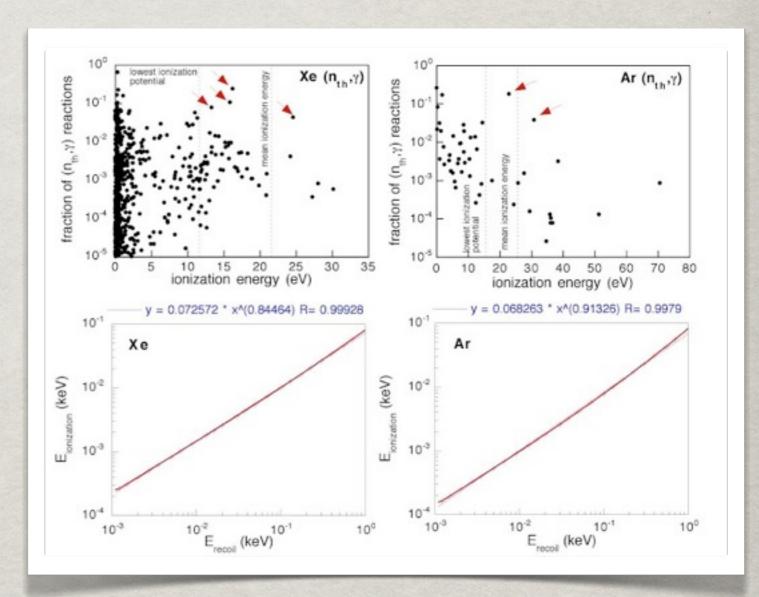




# SUMMARY & OPEN ISSUES

- \*\* A detector concept has been presented which focuses on eliminating systematics with a simple/robust technology for precision CNNS & WIMP experiments
- \*\* Can we really predict the relative QF between <sup>20</sup>Ne and <sup>22</sup>Ne based on kinematics?
- Is there any ionization signal at all at low Q?
- \* How difficult to enrich to <sup>22</sup>Ne?
- \*\* High precision calibration of energy scale/electron gain...laser calibration?




## QF MEASUREMENT: 24 KEV MONOCHROMATIC NEUTRON BEAM (KSU)






P. Barbeau, J. I. Collar, J. Miyamoto, and I. Shipsey. IEEE Trans. Nucl. Sci., 50:1285-1289, 2003.

## QF MEASUREMENT: THERMAL NEUTRONS





P. Barbeau, J. I. Collar, J. Miyamoto, and I. Shipsey. IEEE Trans. Nucl. Sci., 50:1285-1289, 2003.