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Hanohano Origins

• Started as an exercise in ’03 investigating future potential
for world reactor and weapons testing monitoring (see
Guillian report), inspired by DTRA inquiry.

• Workshop in 1/04 concluded that such will be possible,
with giant detectors, and technology just being developed.

– http://www.phys.hawaii.edu/~jgl/nacw.html

• Plan is to get experience with remote monitoring with a
detector that can be built today.

• Have identified at geology & physics workshops in ’05 UH
and ’06 AGU Baltimore, NOW06 Italy, NNN06 Seattle,
great science which a 10 kiloton deep ocean, portable,
detector can accomplish.

– UH 12/05    http://www.phys.hawaii.edu/~sdye/hnsc.html
– AGU 5/06   http://www.agu.org/meetings/sm06/sm06sessions/sm06_U41F.html
– Italy 9/06     http://www.ba.infn.it/~now2006/
– Seattle 9/06  http://neutrino.phys.washington.edu/nnn06/
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Nuclear Monitoring Requires Enormous DetectorsNuclear Monitoring Requires Enormous Detectors
Single detectorSingle detector,  LE = Low Energy ~>MeV, HE = High Energy ~ >GeV

10 MWt
1GWt

Size for 25% measurement of reactor flux, 1 yr, no background. 

Practical nowPractical now
((HyperKHyperK))

FutureFuture

Under waterSurface

PresentPresent
(KamLAND)(KamLAND)

 Present HE Nu Detectors ( ICECUBE)

ProposedProposed
((HanohanoHanohano))

1 KT Bomb

(Future Array)
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1-10 Megaton
Module Not
Outlandish

1-10 Megaton units similar to sizes proposed for slightly higher energy,
and much smaller than ICECUBE under construction.

Kamland exists

SuperK exists

1 km3 under
 construction

Proposed Megaton Hyper-Kamiokande
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Spinoff, Planetary DefensePlanetary Defense:
Type II Supernova Early Warning

Silicon burning duringSilicon burning during
last ~2 days prior tolast ~2 days prior to
collapse detectable fromcollapse detectable from
whole galaxy!whole galaxy!
Sudden increase inSudden increase in
single neutronsingle neutron
appearanceappearance

fluxe!

Odrzywolek, et al., astro-ph/0311012
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Hanohano Science Outline
• Introduction to project
• Neutrino Geophysics

– U/Th mantle flux
– Th/U ratio
– Geo-reactor search

• Neutrino Oscillation Physics (new)
– Mixing angles θ12 and θ13

– Mass squared difference Δm2
31

– Mass hierarchy

• Other Physics, Long range, Conclusions
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Hanohano - 10x “KamLAND” in Ocean

Construct in shipyard, fill/test in port, tow to site, and submerge to ~4 km
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Hawaii Anti-Neutrino
Observatory†

Location flexibility
– Tow to various locations, cable

connect
– Far from continental crust and

reactors for neutrino
geophysics- Hawaii, South
Pacific, …

– Offshore of reactor for neutrino
oscillation physics- California,
Taiwan, …

† hanohano- Hawaiian for distinguished

*

Site survey done
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Technological issues being addressed
- Radiopurity technology

exists
- Scintillating oil studies:

P=450 atm., T=0o

- Several choices available,
safe, industrial

- Implosion studies at sea
- Engineering studies of

detector structure,
deployment

Comparison of the implosion of an empty sphere and a sphere 
with 30% volume filled with foam
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Actual Accomplishments: Structure

• Goal:  workable vehicle at standard
ship costs.

• Analyzed stability, weight, and
structural strength vs scintillator
volume, 5-120kT.

– harbor, loading, testing, towing,
submergence, landing, lift off,
resurface, recovery.

• Single vehicle has problems with
stability and weight, particularly larger
sizes – Al is costly option.

• Shape is cylindrical, cube not
constructable, 30m dia.

• Dual barge and detector module has
much less weight and stability
restrictions. Can build very large.

• 10kt Scintillator is nominal 22kT
detector, lose ~0.9kT buoyancy on
bottom. Ascent 46 min.

• Structure: $22m - OK

1/50 scale model test
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Actual Accomplishments:
Photomultiplier Electronics

Completed electronics prototypes:
• PMT voltage supply manufacturers surveyed,

sample devices in hand, several choices
available (used in South Pole and
Mediterranean experiments).

• PMT signal electronics prototypes
constructed and tested at UH electronics
facility, ready for second round for ocean
tests.

• Signal digitization electronics prototypes
constructed and tested at UH, ready for
second round.

• No stoppers, power is as expected, need
further refinement, reliability testing, etc.
Adequate for proposal stage with predictable
costing at this time.
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Geology: Big Questions

• What drives continental drift, mid-ocean
seafloor spreading?

• What produces and sustains the
geomagnetic field?

• How did the earth form?
• Of what is the deep earth composed?

▶ This experiment addresses all these.
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Preliminary Reference Earth Model

Knowledge of Earth interior from seismology

Dziewonski and Anderson, Physics of the Earth and Planetary Interiors 25 (1981) 297-356.

Measure velocity, use eq’n of state to infer density, guess composition.
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Bulk Silicate Earth model
geologists “standard model”

Knowledge of Earth
composition
largely model

dependent

McDonough and Sun, Chemical Geology 120 (1995) 223-253.

Mostly composition from three meteorites.
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Terrestrial Heat Flow: 31-44 TW

Hofmeister and Criss, Tectonophysics 395 (2005) 159-177.

Pollack, Hurter, and Johnson, Reviews of Geophysics 31(3) (1993) 267-280.

Varies greatly, ocean 
spreading zones a problem

Time dependence a 
problem for geomagnetism
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Parent Spectrum Geo-Neutrinos

thorium chain
uranium chain

Threshold for Reines and Cowan 
coincidence technique

prompt

delayed
No present method for K nus.
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Predicted Geo-Neutrino Signal

F. Mantovani et al., Phys. Rev. D 69 (2004) 013001.

BorexinoSNO+ KamLANDHanohanoHanohano

Continental locations dominated by local crustal radioactivity.

Also LENA, EARTH, 
Baksan… proposals
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Geo-ν + Background Spectra

cosmic ray muons

alpha
source

radioactive materials

fast neutrons

spallation
products

Target
Volume

µ±

µ±
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Hanohano: Mantle/Core Measurement

15 years of SNO+15 years of SNO+

48 years of Borexino48 years of Borexino

1 year of Hanohano1 year of Hanohano

Must subtract uncertain crust flux to get that due to mantle/core.
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Hanohano: Mantle Measurement
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No continental detector can measureNo continental detector can measure
the mantle/core flux to better than 50%the mantle/core flux to better than 50%

due to 20% uncertainty in crust fluxdue to 20% uncertainty in crust flux

10 kT-yr exposure at each location
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Earth Th/U Ratio Measurement

390 4 ± 82.0KamLAND
island arc

3.93.9 ± 0.80.20Hanohano
oceanic

393.9 ± 2.40.62SNO+
continental

1204 ± 41.1Borexino
continental

Years to 10%
measurement

Th/U
(1 yr exposure)

δR/R
(1 yr exposure)

Project
crust type

Statistical uncertainties only; includes reactors.Statistical uncertainties only; includes reactors.
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Geo-ν projects: Predicted Rates

31.3

24.7

5.9

9.2

Crust
(events/y)

80.9
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1.7

3.3

Mantle
(events/y)

83.712.50.35KamLAND
island arc

8.7

0.57

0.18

Size
(1032 free p)

12.2112.2Hanohano
oceanic

35.130.0SNO+
continental

6.27.6Borexino
continental

Reactor
(events/y)

Geoneutrino
(events/y)

Project
crust type
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Measuring the Mantle

80 ± 1980 ± 8980 ± 11780 ± 290Signal
134 ± 17682 ± 65913 ± 862574 ± 240Total
80 ± 1680 ± 1680 ± 1680 ± 16Mantle

54 ± 7602 ± 63833 ± 832494 ± 239Non-Mantle
30 ± 6285 ± 57377 ± 75229 ± 46 Crust ν

12 ± 1298 ± 27438 ± 391434 ± 129 Reactor ν

12 ± 219 ± 218 ± 2831 ± 196 Envir. Bkgd.

HanohanoBorexinoSNO+KamLANDSource

Rate (10 kT-y)-1

Note: while continental locations cannot measure mantle, 
combined measurements from all yield important geophysics.
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Simulated Geo-Neutrino Source
Weighted heavily towards local region of mantle.

Make observations at several sites to test mantle variation.
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Anti-Neutrinos from the Core?

Geo-reactor hypothesis

Herndon hypothesis: natural
breeder reactor in core of Earth

with P=1-10 TW

Herndon, Proc. Nat. Acad. Sci. 93 (1996) 646.
Hollenbach and Herndon, Proc. Nat. Acad. Sci. 98 (2001) 11085.

Controversial but apparently not ruled out, and if true of tremendous importance.
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Geo-Reactor Search

5122KamLAND
island arc

1.00.3Hanohano
oceanic

229SNO+
continental

4312Borexino
continental

5σ discovery
power
(TW)

Power limit
99% CL

(TW)

Project
crust type

1 year run time- statistical uncertainties only
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Need 1 – 10 TW to drive geomagnetic field.
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Physics Big Questions:
Neutrino Properties

• Non-zero neutrino mass and oscillations between
flavors established.

• Filling in MNS-P mixing matrix needed.
• Need precise (few %) values.
• Quest for θ13, need various approaches.
• Hierarchy of masses? (m1<m2<m3 ?)
• CP violation?  CPT?
• Importance to cosmology, grand unification….

▶ This experiment addresses many of these
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Pee=1-{ cos4(θ13) sin2(2θ12) [1-cos(Δm2
21L/2E)]

          + cos2(θ12) sin2(2θ13) [1-cos(Δm2
31L/2E)]

          + sin2(θ12) sin2(2θ13) [1-cos(Δm2
32L/2E)]}/2

→ Each of 3 amplitudes cycles (in L/E ~ “t”)
     with own periodicity (Δm2 ~ “ω”)
  - amplitudes 13.5 : 2.5 : 1.0 above
  - wavelengths ~110 km and ~4 km at reactor peak ~3.5 MeV

• ½-cycle measurements can yield
– Mixing angles, mass-squared differences

• Multi-cycle measurements can yield
– Mixing angles, precise mass-squared differences
– Potential for mass hierarchy
– Less sensitivity to systematics

3-ν Mixing: Reactor Neutrinos

}  wavelength
      close, 3%
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Reactor & Atmospheric  ν
Mixing Parameters: Present Knowledge

• KamLAND combined analysis
tan2(θ12)=0.40(+0.10/–0.07)
Δm2

21=(7.9±0.7)×10-5 eV2

Araki et al., Phys. Rev. Lett. 94 (2005) 081801.

• CHOOZ limit sin2(2θ13) ≤ 0.20
Apollonio et al., Eur. Phys. J. C27 (2003) 331-374.

• SuperK (and K2K)
 Δm2

31=(2.5±0.5)×10-3 eV2

Ashie et al., Phys. Rev. D64 (2005) 112005
Aliu et al., Phys. Rev. Lett. 94 (2005) 081802
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Significant νe Flux Measurement
Uncertainty Due to Oscillations

• Flux from distant, extended source like Earth
or sun is fully mixed

• P(νe→νe) =1-
0.5{cos4(θ13)sin2(2θ12)+sin2(2θ13)}

           = 0.592 (+0.035/-0.091)
Lower value for maximum angles
Upper value for minimum angles

• Φsource= Φdetector/P(νe→νe)
Uncertainty is +15%/-6%

⇒ precise flux measures need θ12 & θ13
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Proposed ½-cycle θ13 Measurements

• Reactor experiment- νe point source
• Double Chooz, Daya Bay, Reno
• θ13 with “identical” detectors
     near (100m)/far(1-2 km)
• P(νe→νe) ≈1 -
          sin2(2θ13)sin2(Δm2

31L/4E)
• sin2(2θ13) ≤ 0.03-0.01 in few years
• Solar angle & matter insensitive
• Systematics difficult

Anderson, et al., hep-ex/0402041

Idea: L. Mikaelyan, V. Sinev, Phys. At. Nucl. 62 (1999) 2008, hep-ph/9811228.
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Suggested ½-cycle θ12 Measurement
• Reactor experiment: νe point source at

modest distance (10-100 km).
• P(νe→νe)≈1-sin2(2θ12)sin2(Δm2

21L/4E)
• 60 GW·kT·y exposure at 50-70 km ->

– ~4% systematic error from near detector
– sin2(θ12) measured with ~2% uncertainty

• We can do job without near monitor (?)

Bandyopadhyay et al., Phys. Rev. D67 (2003) 113011.
Minakata et al., hep-ph/0407326
Bandyopadhyay et al., hep-ph/0410283
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Energy Spectra, Distance and Oscillations

50 km study

Constant L/E

First return of 
“solar” oscillation

Log(Rate) vs Energy and DIstance

E

L
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Reactor Anti-Neutrino Spectra at 50 km

1,2 oscillations with sin2(2θ12)=0.82 and Δm2
21=7.9x10-5 eV2

1,3 oscillations with sin2(2θ13)=0.10 and Δm2
31=2.5x10-3 eV2

no
oscillation

oscillations

no oscillation

oscillations

Neutrino energy (MeV) L/E (km/MeV)

Distance/energy, Distance/energy, 
L/EL/E

Energy, EEnergy, E

> 15 cycles

suggests using Fourier Transforms
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Rate versus Distance and θ13

No osc

Osc

Max suppression
near 57 km

Note shift in total rate due to θ13 

Rate versus Distance
Rate Variation with θ13 

sin2(2θ13)

Message:
 cannot  measure θ12

well without
measuring θ13.
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Fourier Transform on L/E to Δm2

Fourier Power, Log Scale

Spectrum w/ θ13=0

Δm2/eV2

Preliminary-
50 kt-y exposure at 50 km range

sin2(2θ13)≥0.02
Δm2

31=0.0025 eV2 to 1% level

Learned, Pakvasa, Svoboda, Dye preprint in preparation

Δm2
32 < Δm2

31 
normal hierarchy

Δm2 (x10-2 eV2)

0.0025 eV2

peak due to
nonzero θ13

Includes energy smearing

Peak profile versus distance

E smearing

Fewer cycles

50 km
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Beauty of Employing Fourier
(new realization, by us anyway)

• Normal statistical sqrt(n) Poisson errors
apply to peak amplitude (mixing angle),

• but NOT to peak location… allows
possibility for very precise measurement
of Δm2 (<1%?)

• Beats χ2 and normal Max£, I think. (?)
• Employ signal processing tricks to

maximize information extraction (ie.
matched filter).
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Neutrino Mass Hierarchy w/ Reactor Neutrinos ?
-needs work

m3

m3

m2
m1 m1

m2

normal inverted
|Δm2

31| > |Δm2
32| |Δm2

31| < |Δm2
32|

m
as

s

Δm2
32 ≈ (1±0.03)Δm2

31
Petcov and Piai, Phys. Lett. B533 (2001) 94-106.

Normal and
 inverted hierarchy

FT Pwr

very slight 
asymmetry

Peak has low-side small shoulder,Peak has low-side small shoulder,

inv hierarchy shoulder on high-side.inv hierarchy shoulder on high-side.
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Hanohano -
Candidate Reactor Sites

SW of San Onofre, Calif- ~6 GWth
SE of Maanshan, Taiwan- ~5 GWth

Depth profiles
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Hanohano Science Summary
1 Yr, 10 Kiloton Exposures

• Neutrino Geophysics, deep mid-ocean
– Mantle flux U/Th geo-neutrinos to ~25%
– Measure Th/U ratio to ~20%
– Rule out geo-reactor of P>0.3 TW

• Neutrino Particle Physics, 50 km from reactor
– Measure sin2 (θ12) to few % w/ standard ½-cycle
– Measure sin2(2θ13) down to ~0.05 w/ multi-cycle
– Δm2

31 at percent level w/ multi-cycle
–  No near detector; insensitive to background,

systematics; complimentary to DC, DB, Minos, Nova
– Potential for mass hierarchy with large exposure
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Tests & Studies Needed
• Complete module anti-implosion work/tests.
• Demonstrate optical modules and scintillator in deep

ocean.
• More scintillator studies, radiopurity, optimize choice.
• Further detector barge design and full costing.
• More detailed geological simulation, error analysis and

study choice of deep ocean sites.
• Reactor distance and depth, including backgrounds.
• Can we do neutrino mass hierarchy with FT method?
• Neutrino direction studies.
• + Other physics: SN, relic SN, nucleon decay, … (recall

that this will be the largest low energy detector, 20x KamLAND, 10x SNO+, 50x
Borexino, but 0.2x LENA?).
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• First step in development of long range
neutrino monitoring applications

• Hanohano
– 10 kT deep ocean anti-neutrino observatory
– Movable for multi-disciplinary science

• Neutrino geophysics
• Neutrino oscillation physics and more

– Under development at Hawaii
– 1st collaboration meeting 3/07 in Hawaii

interested? jgl@phys.hawaii.edu

Acknowledgements: Steve Dye, Peter Grach,  Shige Matsuno, Sandip
Pakvasa, Joe Van Ryzin, Bob Svoboda, Gary Varner, Mavourneen
Wilcox, Makai Ocean Engineering, CEROS, DOE, UHM

Conclusion
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backups
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Nucleon Decay with Hanohano

• PDK and SN data with geophysics studies…
• Nucleon Decay: kaon modes:

– present:      τ/b > 2.3 x 1033 y [Super-K, PR D 72, 052007 (2005)].

– Hanohano: τ/b > 1034 y  with 10 yr [Lena PR D 72, 075014 (2005)]

• Neutron Disappearance:
– present:      τ(n  → invis) > 5.8 × 1029y at 90% CL

      τ(nn → invis) > 1.4 × 1030y at 90% CL
    [838 & 1119 metric ton-years of  KamLAND, PRL 96 (2006) 101802]

– Hanohano: τ(n  → invis) > 5 x 1031 y at 90% CL  10 yrs

     τ(nn → invis) > 5 x 1031 y at 90% CL

Simulations needed


