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Antineutrino Detection Technology Has A
Direct Impact On Other Areas Of
Nonproliferation And Nuclear Security
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“Nuclear Car Wash” Detectors Are Being Tested at LLNL for Active
Interrogation of Cargo

90% of the world’s trade moves
through sea-going containers

More than 6,000,000 containers
enter the U.S. annually

Cargo material is diverse

Detector

arrays j B Neutron fan-beam
Containers are large (hidden) -

Need tscan < 1 min / container ‘ £/ Neutron
: ) generator

This is a formidable problem - cargo scanning is one element in
a global nuclear control regime

I LN




Active interrogation is one element in a cargo
scanning system
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Thermal neutrons are known to induce B-delayed y-rays above 3 MeV in U,
Pu

Experiment by Norman et al. 2004 [1]
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«Separate neutron irradiations of
235U (93%), 23°Pu (95%), wood,
polyethylene, aluminum,
sandstone, and steel.
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233U(ny,,f) and 222Pu(n,y,.f):

> Significant gamma-ray intensity above 3 MeV.

Short effective half-life (approximately 25 s).

u LLNL [1] E.B. Norman et al., NIMA 521 (2004) 608-610.




Cargo experiments with HEU and 14 MeV neutron beam

HEU embedded in plywood
R;=61 cm (40 g / cm? wood)
Plastic Scintillators R;=2.5m (60 g / cm?2 wood)
= SR R Y, ~ 6x1010 /s initial
®_~ 6x10% n/s/cm? at target
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The Experiment:
1. Turn on beam for 30 sec
2. Turn off beam

max Ez 14 MeV 3. Acquire counts for 100 sec




Detectors Used Are Very Similar in Scale and Design to San
Onofre Detector

4 fest

2 feet

6 inches & inches & inches

Total of 8 plastic scintillator
6-10" deep, 2-4 feet wide

4 ganged liquid scintillator
detectors 6 foot tall, 8” diameter

I LN



14 MeV beam induces a troublesome background for E, > 3 MeV

~ Nat-U and background pulse height spectra T
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50% HPGe spectra after irradiation with 14 MeV neutrons,
with and without the 22 kg nat-U target.
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First Results in 2005: Decay curves show fission dominates 1°N
contamination after a few half-lives

3MeV<EY<4MeV
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Delayed y-ray signal stands out to 5c in wood

+ Single cycle decay curves are shown
for Re=1,2,3 and 4 ft. plywood.

* Normalized to 25 pA (100 W) into the I irradiation cycle
d2 gas target. i 112:x::{|£3 d |
3 MeV <Ey <4 MeV 3 1 Wood + HEU
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Improving Passive Detection of HEU and Pu using Plastic Scintillator
and a Statistical Theory of the Fission Chain

A chain initiated by spontaneous fission of Pu-240

239 97 139
n+ P/u —>402r+ 54Xe+4n

240Pu — 398r + 138Ba + 2n
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Neal Snyderman, Dan Dietrich, Chris Hagmann, Wolfgang Stoeffl, et. al
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Number of neutrons emitted in fission
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A simple time-correlation study: look at time series of
counts

From one 512 psecond interval to the next, sometimes very
different numbers of counts are recorded
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Signature of fission

The increased width of the Pu data distribution over that of a random
distribution is due to the very large fluctuations in the number of
neutrons emitted from one fission chain to the next
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To fully exploit time signhatures, we want to measure gamma-
gamma, neutron-neutron, and gamma-neutron time correlations
within burst-like fission chains occuring at low rates

« Examples of time signatures
— ns to ten ns time correlations in the gamma shower

— Microsecond time correlations persist even after thermalization
of neutrons

— Microsecond time correlations can persist even after neutron
capture and conversion to 2.2 MeV gamma ray

— Muons can create burst-like events that mimic the signal

 Doped/undoped plastic or liquid scintillator detectors with a veto
fulfill many the requirements for exploiting this rich signature

— large solid angle

— ns timing resolution with waveform digitizers

— Good efficiency for fast neutrons and gammas

— with dopants, good efficiency for thermal neutrons

— pulse shape discrimination may also be useful (depending on
detector geometry)
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Recent studies: one element of a 5-sided passive HEU
detection test bed

8 each

1 mx 10 cm x 20 cm plastic scintillator
tubes with opposite

side readout

5cm
plastic muon Y
veto paddles

First implementation uses 3He
tubes for thermal neutron detection
- neutron recoil or capture in doped
scintillator can also be used

Detector elements, size
and readout are close
analogs of

antineutrino detectors



Recent data recorded with a scintillator/*He system
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Summary of fission chain studies

* There exists afission chain signature from high multiplication HEU (and Pu) that
can be passively exploited for detection
— using large neutron and y-ray detectors outside a shipping container or other
— even from low multiplication, if you can wait long enough (as we demonstrated experimentally)

« Backgrounds from natural radioactivity can blind the (n, y) signal, but

— high multiplication events can be picked out for by statistical techniques
— with fast timing, prompt fission y-ray signal can be seen between background counts

 Background from cosmic ray showers interacting with cargo can create a signal
gualitatively similar to the fission chain signal

Cubic meter scale scintillator detectors with a muon veto

hold promise for passive HEU detection
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The point(s)

 San Onofre like detectors have wide application outside of
basic or applied antineutrino physics

 Other problems in nonproliferation and nuclear security are
as interesting as reactor monitoring

 This community and technology can help solve those
problems

e Spectroscopy isn’t everything
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