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Motivation

I Many near-field reactor monitoring applications will require detectors

which are portable and able to to operate wherever reactors are.

I This indicates active volumes on the order of a few tons (size scales

of 1–2 m), operating in minimal-overburden locations.

I The near-surface background radiation environment and smaller

detector size present different challenges from large, underground

experiments. “Conventional wisdom” from decades of large detector

development is not necessarily applicable.

I The Prospect detector provides the first example of surface-level

antineutrino detection with > 1 signal to background, providing

unique insight into the character of near-surface backgrounds, and

effective techniques for background mitigation.
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Information sources

Representative detector: Prospect

I Segmented, ∼ 0.07% 6Li-loaded PSD liquid scintillator

I 14 × 11 segments, each 14.52 × 120 cm3 (∼ 25 l)

I Double-ended readout by 5” PMTs (308 total channels)

I ∼ 7 m from 85 MWth reactor (HFIR at ORNL)

I Minimal overburden (building roof) surface site at 250 m altitude

Corresponding simulation

I Geant4 (version 4.10.04p01)

I Physics list QGSP BERT HP, with G4HadronElasticPhysicsHP

replaced by HadronElasticWithThermalNeutrons

I Prospect detector response model for analysis of simulation

through detector data chain
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What causes backgrounds?

Neutrons required for correlated IBD-like backgrounds

10s-of-µs neutron capture timescale is distinctive: longer than

electromagnetic interactions (ns), shorter than accidental coincidences

(& ms). IBD-mimic correlated events are highly unlikely without

neutrons involved.

Near surface, primarily cosmic fast neutron background
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neutrons through shielding
muon-induced neutrons Ambient surface neutron spectrum,

and toy model processed through

1 mwe shielding. Cosmic fast

neutrons dominate flux in detector

at surface; several meters down,

these will be sufficiently attenuated

that local muon spallation becomes

the dominant background source.
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primary IBD-mimic mechanisms
Most false-IBD events come from one of two interaction mechanisms:
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Subsequent capture of two thermal neutrons,

where the first captures on an unintended

nucleus (primarily H) producing a gamma

misidentified as a positron.
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inelastic recoil γs

12C

recoil, capture

Fast neutron interactions followed by capture

(of the same or two different neutrons), where

the “neutron-like” character of the initial

interaction is obscured.
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capture, capture mechanism

I Likely when multiple correlated low-energy neutrons (produced by

spallation in the local shielding) enter the detector.

I Heavy-nucleus shielding (lead) is a potential source; should be

separated from active volume by, e.g., borated poly.

I Tends towards outer layers of detector (limited range of thermalized

neutrons).

I Ability to correctly identify neutron captures suppresses

backgrounds.

I Increased availability of distinctive capture target nuclei (e.g. 6Li)

reduces unwanted (e.g. n+H) captures.
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recoil, capture mechanism

I Produced by fast neutron (10s of MeV) interactions in detector.

I Can be more deeply penetrating than capture,capture events.

I 12C resonance is distinctive signature feature; other contributions at

all energies.

I Otherwise-identifiable recoil components “hidden” under gammas.

I Suppress by overburden shielding, PSD, segmentation.
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Background rejection detector capabilities

Prospect’s multiple capabilities work together to reject backgrounds:

I Passive shielding

I Neutron capture identification (6Li loading + PSD)

I Prompt event classification (PSD, segmentation) — without PSD,

potentially possible with detailed topology information.

I Shower veto (high energy, recoil, or capture)

I Prompt-delay distance (position reconstruction)

I Fiducialization (detector as active shielding)

The relative impact of different detector capabilities is demonstrated by

disabling different components in analysis.
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Background capability impacts (Prospect data)
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I Rejecting prompt event neutron

recoils (PSD) is most critical.

I Sufficient detector size to

fiducialize comes next — a

large enough detector could do

without PSD.

I Shower veto especially effective

on capture, capture

mechanism.

I Prompt/delay distance is easy

and helpful.
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Background capability impacts (simulation)
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I Simulation does a good job of

predicting these response

patterns, making it a valuable

tool for assessing detector

design choices.

I This plot shows the

contributions from simulated

cosmic neutrons alone, which

explain most correlated

backgrounds in the data.
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Muon background component (simulation)
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I Same analysis as preceding

slide for simulated non-neutron

cosmic backgrounds (mainly

muons).

I In the near-surface

environment, muons produce

much less background than

cosmic neutrons.

I Predominantly contribute to

capture, capture mechanism

channel by multi-neutron

spallation showers.
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Accidental background component (Prospect data)
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I Prospect reactor-on

accidental backgrounds,

measured with off-time

coincidence window.

I Dominated by high-energy

neutron capture gammas

(especially on iron).

I Reactor-off is much lower.

I Prompt-delayed distance

provides strongest suppression,

followed by fiducialization.

I Anti-shower veto removes

many neutron captures that

might pair with accidentals.
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Background time variation
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I The IBD-like correlated background distribution is measured during

reactor-off periods to subtract from reactor-on.

I Changes in the fast neutron background (correlated with

atmospheric pressure) cause O(10%)-level variations.

I How to correct for fluctuations in background subtraction?
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Background normalization proxies
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I “Almost-IBD-like” proxy event rates continuously track variations.

I Shown: rate of recoil, capture coincidences passing IBD cuts, except

replacing “positron-like” with “recoil like” prompt requirement.

I On/off subtraction normalization determined from proxy variables.



LLNL-PRES-759241 15/20

Summary: understanding IBD backgrounds

I Cosmic fast neutrons produce most near-surface correlated

backgrounds.

I Simulations can provide good predictions of detector response to

backgrounds.

I A combination of detector capabilities work together to mitigate

backgrounds.

I Characterization of the prompt positron-candidate event is

especially important. Segmentation plus recoil PSD provides a

powerful handle on this.
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Bonus Slides
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Fiducialization: IBD background positions (data)

0.5− 0.0 0.5
position along segment [m]

0

5

10

15

20

ra
te

 [m
H

z/
m

]

preliminary

accidentals

I IBD-like background event

prompt (red) and capture

(blue) event positions along

length of cell.

I Outermost segments excluded.

I Fiducializing on both prompt

and delayed position helps

more than either alone.
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Shower veto timing
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I Time between delayed neutron

capture and nearest

veto-inducing event (high

energy or neutron interaction).

I Data compared with cosmic

neutron background simulation.

I Shorter time component,

driven by neutron interactions

in immediate vicinity.

I Long tail of neutrons arriving

after showers, from interactions

far outside detector (not

included in MC); vetoing all

these would result in large

deadtimes.
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Passive shielding guidelines

I Priority is to knock down fast neutron flux.

I Highest energy neutrons (tens to hundreds of MeV) stopped by

total overburden mass — some benefit per mass from hydrogenous

material; engineering/space constraints may indicate lead.

I Inner shielding should moderate, capture secondary neutrons from

outer shielding layers (borated poly inside lead).

I Fast neutrons come from above — prioritize shielding on top.

I Individual thermal/epithermal neutrons are not a large concern.

I High-energy accidental gamma backgrounds (e.g. neutron capture

on iron) may have intense “hot spots” requiring extra local

shielding.


