### Update on NuLat: A Compact, Segmented, Mobile Anti-neutrino Detector

John Learned for the NuLat Collaboration:

J. Blackmon<sup>3</sup>, R. Dorrill<sup>7</sup>, M.Duvall<sup>7</sup>, C.Lane<sup>1</sup>, <u>J.G.Learned</u><sup>7</sup>, V.Li<sup>7</sup>, D.Markoff<sup>5</sup>, J.Maricic<sup>7</sup>, S. Matsuno<sup>7</sup>, R.Milincic<sup>6</sup>, H.P.Mumm<sup>4</sup>, S.Negrashov<sup>7</sup>, M.L.Pitt<sup>8</sup>, C.Rasco<sup>9</sup>, G.Varner<sup>7</sup>, <u>R.B.Vogelaar</u><sup>8</sup>, T.Wright<sup>8</sup>

1: Drexel, 2: Johns Hopkins, 3: LSU, 4: NIST Gaithersburg, 5: NCCU, 6: Kapiolani College: 7: University of Hawaii, 8:Virginia Tech, 9: Oak Ridge National Lab.

And a number of others who have helped along the way.



### NuLat Motivation

- Demonstrate reactor monitoring capabilities
  - Security monitoring
  - Commercial burn-up monitoring
- Investigate fast neutron directionality capabilities
  - Detection of special nuclear material
- Probe reactor anomalies
  - Sterile neutrino search
  - Precision  $\mathbf{v}_{e}$  energy spectrum measurement
- Exceptional background rejection
  - full 3D precision segmentation (256 cubic centimeters)
  - complete event 'topology' (dE,x,y,z,t)
  - exceptional light collection (600 pe/MeV)
  - sub-nanosecond timing















**NIST NCNR Reactor** 

11 Oct 2018

### NuLat Features



| Feature                           | Rational                                                  |
|-----------------------------------|-----------------------------------------------------------|
| Excellent Energy Resolution       | Precision Spectral Analysis – Distortions from prediction |
| Unique Start Signal               | separate positrons from gammas, neutrons, and electrons   |
| Unique Stop Signal                | separate n-capture from backgrounds                       |
| Short Time Delay                  | improves real/random                                      |
| Fine Segmentation                 | smaller improves real/random                              |
| E,x,y,x,t complete event topology | best method to remove residual backgrounds                |
| Minimal Wall Material             | improves systematics and signal degradation               |
| Fast Timing (Sub Nanosecond)      | time-ordering of energy deposits                          |
| Minimal Fiducial Cut Required     | minimizes shielding size                                  |
| Strong neutrino source            | L/E easier at shorter distances, better S/B               |
| Movable                           | Vary L without E, multiple sources and uses               |
|                                   |                                                           |

# Classic $\overline{v}_e$ Signature





#### Raghavan Optical Lattice









- light channeling via total internal reflection
- full 3D light collection along principle axes
  - Breaks degeneracies present in other detection schemes

John Learned @ AAP 2018

# Segmentation

proven technique: micro-LENS

operational liquid scintillator ROL detector located at KURF

Cell size =  $(3.25'')^3$ 

thin Teflon walls (0.002")

partial light channeling (n=1.34 and 1.49)



LENS 60x60x60



- NuLat Demonstrator (solid scintillator)
  - 5x5x5 cubes
    - effectively 125 individual detectors
  - 2.5 inch polished plastic scintillator cubes
  - 0.5% <sup>6</sup>Li by wt. loading (Eljen)
  - VM2000 reflective film 'dots' to maintain air-gap
  - *Total* light channeling (n=1 and 1.54)
  - Easily scalable to larger mass
  - True zero-mass wall no energy loss
  - \* Change to Liquid Base
  - Due to sold plastic inadequate optical properties, slow development and escalated cost.

# Segmentation



Log plot of light output on the (X-Y) face of a mirrored NuLat design via deposition of 2 MeV in the central cell



- The amount of light detected in the plane that is not directly facing the cell with the energy deposit is at the level of < 5%</li>
- This pattern is seen in all 3 projections
- The cube containing the energy deposit is identified uniquely by amplitude alone
- Detected light may further be identified by signal timing, permitted location (such as the gammas from positron annihilation must be on average in opposite directions)

# Unique Start Signal

- Positron plus annihilation gammas
  - large single cell (or two), small halo (0.1-1.0 MeV total), in that time order
  - rejects most gammas (primary reduction via passive shielding when close to reactor)
    - single Compton within detector with no halo
    - multiple Compton within detector with too large a halo
    - single P.E. effect with no halo
  - rejects most cosmogenic backgrounds
    - pulse-shape discrimination rejects fast
    - neutrons
    - <sup>9</sup>Li, <sup>8</sup>He are  $\beta$  emitters with no annihilation
  - pair production reduced by primary shielding





# Event Topology





note: 3D allows digital separation of events *along* channel

Average single-cell prompt response to a uniform3.8 MeV anti-neutrino flux.no fiducial cut

# Changes in Primary Design



Plastic scintillator on hold

Li loaded production delayed ~2yrs

#### <u>Revert to LENS liquid design</u>

Use available Li loaded scintillator

Optical properties not as Change from Teflon film needed (transmission, pulse to acrylic hollow windows shape ID) fill/drain & calibrate

Cost much escalated

May go back later – easy change fill/drain & calibrate through small vertical tubes

Assembly underway now.



# Hollow clear plastic windows



Bruce Vogelaar invention and implementation Now using laser cutter, and will try laser welding

# Prototype in Lab





# Electronics Improvement





We utilize digitizers made at UH for miniTimeCube

First triggering utilized simple multiplicity

Upgrade almost ready, employing trigger specific to one cube in lattice (or with neighbors)

### ROL 5<sup>3</sup> Antineutrino Detector

- Design Re- Finalized
- All major material in hand
- Construction to be completed ~late 2018
- Deployment:
  - Ready in Early2019
  - Venue(s) TBD... various alternatives











11 Oct 2018

### Conclusion



- NuLat design:
  - Precision topology capabilities E(x,y,z,t)
  - Short mean time for coincident signal
  - Pulse shape discrimination for both start and stop signals
  - Several methods of evaluating systematics
- NuLat addresses
  - Reactor neutrino physics
  - Reactor monitoring
  - Special nuclear material safeguards



## Questions?

## PSD in <sup>6</sup>Li Plastic







Better energy resolution results in better background rejection.

John Learned @ AAP 2018

# **Energy Resolution**



- $\rightarrow$  E<sub>v</sub>= E<sub>e+</sub> + 1.8 MeV
- $\rightarrow$  full positron energy in one cell or at most two (vertex cell)
- $\rightarrow$  minimal contamination by annihilation gammas in vertex cell
- $\rightarrow$  allows excellent neutrino energy resolution throughout the complete detector



# Unique Stop Signal

- Lithium-6 PVT
  - 7 μs time correlation
    0.5% by wt. <sup>6</sup>Li PVT
  - mono-energetic ~400 keV<sub>ee</sub>
  - single cell stop tag
  - n/gamma PSD separation
  - 23% n capture in same cell as positron
  - 60% n capture in same cell as positron plus the six facing cells
  - 940 barns

#### Neutron Capture Time in <sup>6</sup>Li PVT Scintillator



#### **NIST Background Studies**

- Gamma spectrum surveyed via germanium detector (red)
- Germanium detector response to gamma model developed (blue)
- Gamma model allows for detailed simulation studies inside mTC Cave









11 Oct 2018

John Learned @ AAP 2018

### <sup>222</sup>Rn Internal Calibration

- <sup>226</sup>Ra <sup>222</sup>Rn-Generator
- Fill airgaps with <sup>222</sup>Rn rich gas
- Same/adjacent cell <sup>214</sup>Bi  $\rightarrow \beta$  + <sup>214</sup>Po followed by ( $\tau$ =164µs) <sup>214</sup>Po  $\rightarrow \alpha$  + <sup>210</sup>Pb
- Close temporal and spatial structure to that of a antineutrino capture
- Provides PSD stop tag
- Mean  $\beta$  E = 642keV
- Mean α E ~ 700keVee
- Characterize surface scintillation
  affects





#### Sterile v Search Performance



- S/B = 3
- Time is calendar time at NIST
- NuLat is expected to have better S/B, even in higher-flux environments (10/1)



### IRS: Custom Digitizers

- SCROD board stack with IRS3d chips similar to those used in Belle – 100 ps timing resolution
- Separate Data and triggering paths
- 16 chips per board stack -> seen at right
- 192 chips per cube (1536 chan)
- 8 channels per chip, 2-4
  Gigasamples / s
- 32,768 sample analog storage
- (per channel)







### Additional System Electronics

- Clock and Triggering Board
  - Provides a low-jitter clock to frontend modules ( $\sigma_t < 2 \text{ ps}$ )
  - Issues system triggers to all
    boardstacks based on parameters
    set by the user
  - Can distribute pulses for testing and calibration
- Weiner HV power supply
- Dell server and other computers for storing data, remote operation
- Laser calibration system



