CEvNS Detection with Ricochet

Joe Johnston

MIT

October 11, 2018

Outline

[Ricochet](#page-2-0)

- [Superconducting Bolometers](#page-3-0)
- **[Temperature Readout](#page-5-0)**
- **•** [Experimental Site](#page-6-0)
- **[Current](#page-8-0) Status**

BSM [Searches at Reactors](#page-9-0)

- Neutrino [Magnetic Moment](#page-11-0)
- NSI [Couplings](#page-13-0)
- Massive [Mediators](#page-19-0)

[Summary](#page-22-0)

Ricochet

Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

- \approx N^2 scaling gives large cross section
- Requires low energy recoil detection (hundreds of eV) Ricochet will achieve this via:
	- Zn (superconducting) and Ge bolometers
	- Phase 1: 100 eV threshold, 1 kg
	- Phase 2: 10 eV threshold, 10 kg

Bolometric Detectors

Heat capacity dominated by lattice contributions at ultra-low temperatures

Figure from J Formaggio

Used in direct detection of dark matter

Superconducting Bolometers

- Energy deposited via quasiparticles or phonons
- EM events will create more quasiparticles
- Quasiparticles have long recombination times

Simulation of three years of Ricochet data

Figure from J Billard

Multiplexing TES Readouts

- Thermalize a transition edge sensor (TES) to each detector
- RF SQUID inductance depends on external flux
- Each detector readout is tuned to a specific frequency
- **•** GHz input allows scanning over frequencies

Ricochet will likely be at the Chooz Reactor Complex

- Two cores
- 8.5 GW power combined
- \bullet Both cores on 60% of the time, one core 40%
- Near Site (NS): 400 m from cores, 120 m.w.e
- Very Near Site (VNS): 80 m from cores, ≈ 10 m.w.e expected

Near Site Backgrounds

- **O** Neutron rate from simulation Internal backgrounds from EDELWEISS
- 1.5 evts/kg/day background, 0.5 evts/kg/day signal (0.1-1 keV ROI)

- • Currently have several Zn crystals
- Initial calibration pulses taken at IPNL Lyon
- Future crystals will be cubes for easier polishing

[Ricochet](#page-2-0)

- [Superconducting Bolometers](#page-3-0)
- **[Temperature Readout](#page-5-0)**
- **•** [Experimental Site](#page-6-0)
- **[Current](#page-8-0) Status**
- ² BSM [Searches at Reactors](#page-9-0)
	- Neutrino [Magnetic Moment](#page-11-0)
	- NSI [Couplings](#page-13-0)
	- **Massive [Mediators](#page-19-0)**

[Summary](#page-22-0)

(J. Billard, J. Johnston, B. Kavanagh. arxiv:1805.01798 [hep-ph]. Under review by JCAP.)

• Reactor detection probes lower energy neutrinos (3 vs 30 MeV)

Assumptions:

• Isotopes Si, Ge, Zn, CaWO₄, and Al_2O_3 (Sapphire).

Backgrounds:

- Compton: 10^{-3} discrimination power
- Neutrons: 0.1 discrimination power in $CaWO₄$ and $Al₂O₃$

Neutrino Magnetic Moment

- Minimal SM extensions allow up to $\mu_{\nu} \approx 10^{-15} \mu_B$
- A Majorana Neutrino could allow $\mu_{\nu} \approx 10^{-12} \mu_B$ or higher

Competitive with terrestrial bounds around several years

Focus on vector couplings to quarks, $\epsilon_{ee}^{qV} = \epsilon_{ee}^{qL} + \epsilon_{ee}^{qR}, q = u, d$:

$$
Q_W^2 \rightarrow Q_{\text{NSI}}^2 = 4[N\left(-\frac{1}{2} + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV}\right) + Z\left(\frac{1}{2} - 2\sin^2\theta_W + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV}\right)]^2 + 4\left[N(\epsilon_{e\tau}^{uV} + 2\epsilon_{e\tau}^{dV}) + Z(2\epsilon_{e\tau}^{uV} + \epsilon_{e\tau}^{dV})\right]^2
$$

- $\epsilon_{e\mu}^{uV}$ constrained by $\mu\to e$ conversion in nuclei
- $\epsilon_{\alpha\beta}^{\mu\nu}/\epsilon_{\alpha\beta}^{dV}$ degeneracy broken by combining different N/Z ratios
- Breaking $\epsilon_{\alpha\beta}^{\mu\nu}$ / $\epsilon_{\alpha\beta}^{dV}$ degeneracy is important for DUNE

(P. Coloma and T. Schwetz, Phys. Rev. D 95, 079903 (2017))

Focus on vector couplings to quarks, $\epsilon_{ee}^{qV} = \epsilon_{ee}^{qL} + \epsilon_{ee}^{qR}, q = u, d$:

$$
Q_W^2 \rightarrow Q_{\text{NSI}}^2 = 4[N\left(-\frac{1}{2} + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV}\right) + Z\left(\frac{1}{2} - 2\sin^2\theta_W + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV}\right)]^2 + 4\left[N(\epsilon_{e\tau}^{uV} + 2\epsilon_{e\tau}^{dV}) + Z(2\epsilon_{e\tau}^{uV} + \epsilon_{e\tau}^{dV})\right]^2
$$

- $\epsilon_{e\mu}^{uV}$ constrained by $\mu\to e$ conversion in nuclei
- $\epsilon_{\alpha\beta}^{\mu\nu}/\epsilon_{\alpha\beta}^{dV}$ degeneracy broken by combining different N/Z ratios
- Breaking $\epsilon_{\alpha\beta}^{\mu\nu}$ / $\epsilon_{\alpha\beta}^{dV}$ degeneracy is important for DUNE

(P. Coloma and T. Schwetz, Phys. Rev. D 95, 079903 (2017))

Flavor Conserving Ge+Si:

N/Z values: Ge=1.27, Zn=1.18, Si=1.01, Al=1.08, O=1.00, W=1.48

Flavor Conserving All:

A multi-target experiment can place very strong bounds

Focus on vector couplings to quarks, $\epsilon_{ee}^{qV} = \epsilon_{ee}^{qL} + \epsilon_{ee}^{qR}, q = u, d$:

$$
Q_W^2 \rightarrow Q_{\text{NSI}}^2 = 4[N\left(-\frac{1}{2} + \epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV}\right) + Z\left(\frac{1}{2} - 2\sin^2\theta_W + 2\epsilon_{ee}^{uV} + \epsilon_{ee}^{dV}\right)]^2 + 4\left[N(\epsilon_{e\tau}^{uV} + 2\epsilon_{e\tau}^{dV}) + Z(2\epsilon_{e\tau}^{uV} + \epsilon_{e\tau}^{dV})\right]^2
$$

- $\epsilon_{e\mu}^{uV}$ constrained by $\mu\to e$ conversion in nuclei
- $\epsilon_{\alpha\beta}^{\mu\nu}/\epsilon_{\alpha\beta}^{dV}$ degeneracy broken by combining different N/Z ratios
- Breaking $\epsilon_{\alpha\beta}^{\mu\nu}$ / $\epsilon_{\alpha\beta}^{dV}$ degeneracy is important for DUNE

(P. Coloma and T. Schwetz, Phys. Rev. D 95, 079903 (2017))

Flavor Changing Constraints:

A massive scalar mediator adds a term to SM CEvNS

$$
\frac{\mathrm{d}\sigma_{\phi}}{\mathrm{d}E_R} = \frac{(g_{\nu})^2 Q_{\phi}^2}{4\pi} \frac{E_R m_N^2}{E_{\nu}^2 (q^2 + m_{\phi}^2)^2} F^2(E_R)
$$

 $Q_{\phi} \approx (15.1 Z + 14 N)g_{\alpha}$

Lower mediator masses are better probed at low neutrino energies

A vector mediator interferes with SM CEvNS

$$
Q_W \rightarrow Q_{\text{SM+NP}} = Q_W - \frac{\sqrt{2}}{G_F} \frac{Q_{Z'}}{q^2 + m_{Z'}^2}
$$

[Ricochet](#page-2-0)

- [Superconducting Bolometers](#page-3-0)
- **[Temperature Readout](#page-5-0)**
- **•** [Experimental Site](#page-6-0)
- **[Current](#page-8-0) Status**
- **BSM [Searches at Reactors](#page-9-0)**
	- **Neutrino [Magnetic Moment](#page-11-0)**
	- NSI [Couplings](#page-13-0)
	- Massive [Mediators](#page-19-0)

Ricochet:

- Superconducting Zn bolometers for background rejection
- Multiplexing TES readout will allow necessary scaling \bullet
- **•** Experimental site at Chooz reactor complex
- Zn crystals fabricated and in testing

Proposed experiments will be able to place bounds on new physics:

- Probe nuetrino magnetic moment
- Multiple targets tightly contrain NSI \bullet
- Low energy neutrinos better constrain simple mediator models

Backup Slides

 ν -cleus

Strauss et al. arXiv:1704.04320v2 [physics.ins-det] 9 Aug 2017. (Labels added)

 ν -cleus

- \bullet Initially 11 g, 110 g at a later phase
- Threshold $O(\leq 10 \text{ eV})$

Strauss et al. arXiv:1704.04320v2 [physics.ins-det] 9 Aug 2017

Background Assumptions

Compton Background:

- \bullet 100 events/kg/day in Ge
- \bullet Factor 10^{-3} discrimination power

Neutron Background:

- 10 times larger at VNS
- Factor of 0.1 discrimination power for $CaWO₄$ and $Al₂O₃$
- No reactor correlation

All other backgrounds negligible

[Backup Slides](#page-28-0)

- 10% background normalization uncertainty
- 5% CEvNS normalizations uncertainty

Likelihood:

$$
\mathcal{L}(\mathbf{D} | \boldsymbol{\theta}, \boldsymbol{\psi}) = \mathcal{L}(\boldsymbol{\psi}) \times \prod_i^{N_{\text{bins}}} P\left(\mathcal{N}_{\text{obs}}^{(i)}\middle|\right. \mathcal{N}_{\text{sig}}^{(i)}(\boldsymbol{\theta}) + \mathcal{N}_{\text{bg}}^{(i)}(\boldsymbol{\psi})\right)\,.
$$

- \bullet θ is our parameter of interest
- γ is nuisance parameters, for example constraining the backgrounds.
- A 10% uncertainty is assumed on all background normalizations
- A 5% uncertainty is assumed on the CEvNS signal
- Use profile likelihood ratio test to determine most bounds \bullet
- An asimov data set is used to determine bounds on NSI

(G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554,[1007.1727]

Introduce a 4-fermion coupling $(\alpha, \beta=e,\mu,\tau, f=e,\mu,d, P=L, R)$

$$
\mathcal{L}^{\rm NSI} = - \epsilon_{\alpha\beta}^{fP} 2\sqrt{2} \mathsf{G}_{\mathsf{F}} \big(\overline{\nu}_{\alpha} \gamma_{\rho} L \nu_{\beta} \big) \big(\overline{f} \gamma^{\rho} \mathsf{P} f \big)
$$

 $\mathsf{sin}^2(\theta_W)$ and APV constraints

- It is very difficult to place bounds on new physics without assuming some constraint on $\sin^2(\theta_W)$
- We fix sin $^{2}(\theta_{W})$, but multiply all CEvNS signals by a 5% envelope to account for all systematic uncertainties

