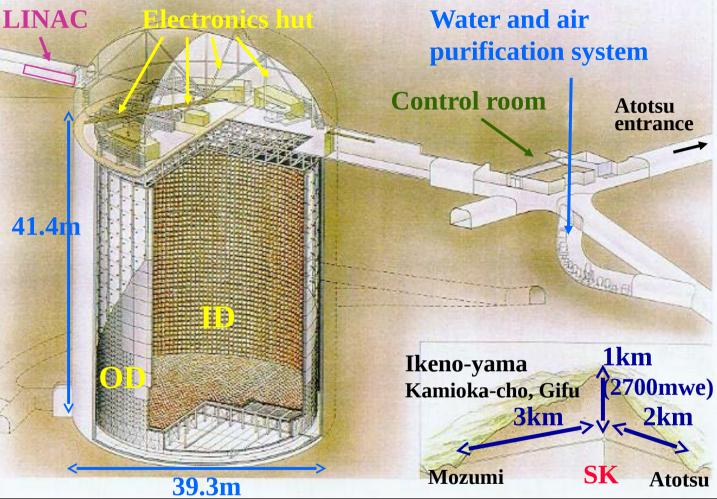


SuperK-Gd

Super-Kamiokande Detector in big numbers


Large variety of studies are conducted at SuperK: Solar neutrinos Atmospheric neutrinos Proton decay Supernovae Supernova Relic Neutrinos Indirect search for DM and more

10 countries ~45 institutions ~180 collaborators

Super-Kamiokande looks into the future: **SuperK-Gd**

Super-Kamiokande Detector

- 50 kton water
- ~2 m OD viewed by 8-inch PMTs
- 32 kt ID viewed by 20-inch PMTs
- 22.5 kt fid. vol.(2m from wall)
- Trigger efficiency:
 >99%@3.5 MeV E_{kin}

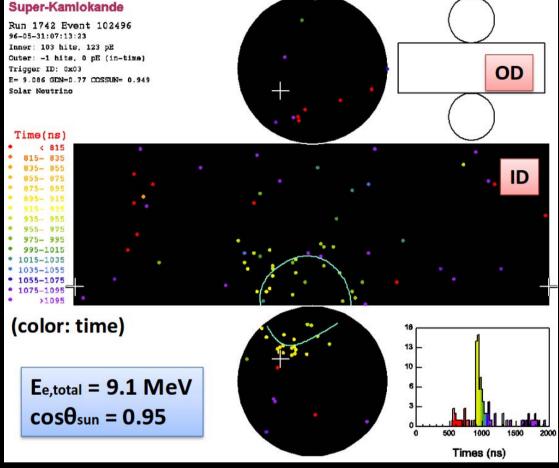
Refurbishment work on-going !

96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
									Au	S Ig-200	K-I				Contraction of the	K-						
					Phas	se	(fro bac	k) S	SK-I			SK-				K-II				K-IV		IV
				SI	art -	ena			6 Ap 01 J			02 C)05 (6 Ju 8 Se				8 Se .8 Ma	-	
						utrin ve-tii		149	6 da	lys	79	91 da	ays		548	3 day	/S		286	0 da	ys	
					tic e resh	nerg Iold	У		6 Ap 01 J			02 C)05 (6 Ju 8 Se				8 Se .8 Ma		
		nbe of	r	ID (coverage)					1146 • 0 %]			5182 (19 %				1129 0 %)				L129 0 %)		
4										I				18	885							

Low energy event reconstruction

Solar neutrino: $\nu + e^- \rightarrow \nu + e^-$

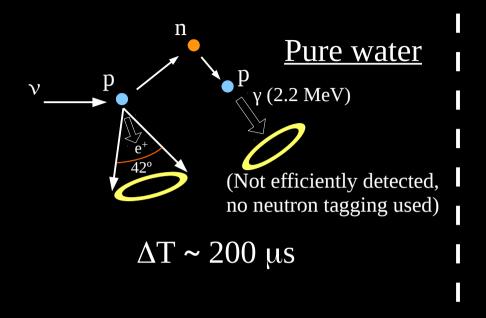
Reconstruction:


- Interaction vertex:
 Timing information
- Electron direction:
 Cherenkov Ring pattern

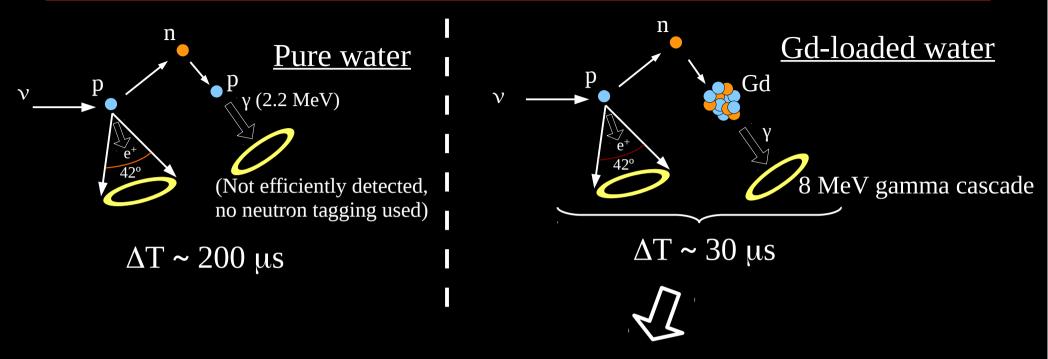
Number of hit PMTs, N_{eff}, (~6 hit/MeV @ SK-I, III and IV)

Resolution (10 MeV electron case):

- → Energy 14% Vertex: 87 cm Direction: 26° ← SK-I
- → Energy 14% Vertex: 55 cm Direction: 23° ← Software improvement
 - for SK-III & SK-IV


5

Next phase: SuperK-Gd



Enhancing the neutron tagging efficiency of SuperK

Neutron tagging with pure water

Neutron tagging with Gd loaded water

With tight time (delayed) and position coincidence between positron and neutron capture (90% neutron capture on Gd with 0.2% $Gd_2(SO_4)_3$ concentration) we will be able to tag neutrons with high efficiency

> Idea proposed as GADZOOKS! by Beacom & Vagins PRL.93, (2004) 171101

SuperK-Gd: Why? How? When?

Why? - Physics targets

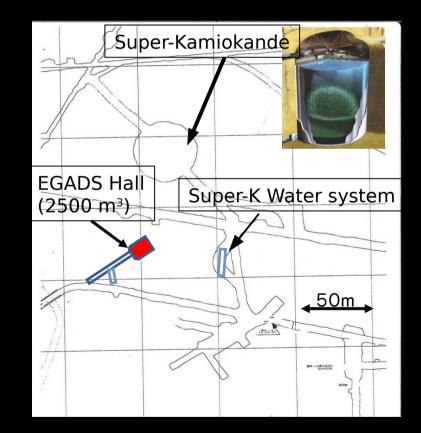
- Supernovae:
 - Supernova relic neutrinos: SN neutrinos from all the past SNe in the universe
 - Improve pointing accuracy
 - Early warning for nearby SN
 - Late black hole formation
- Reduce background in proton decay
- Enhance $\boldsymbol{\nu}$ anti- $\boldsymbol{\nu}$ in atm and T2K analyses

How? - SuperK refurbishment

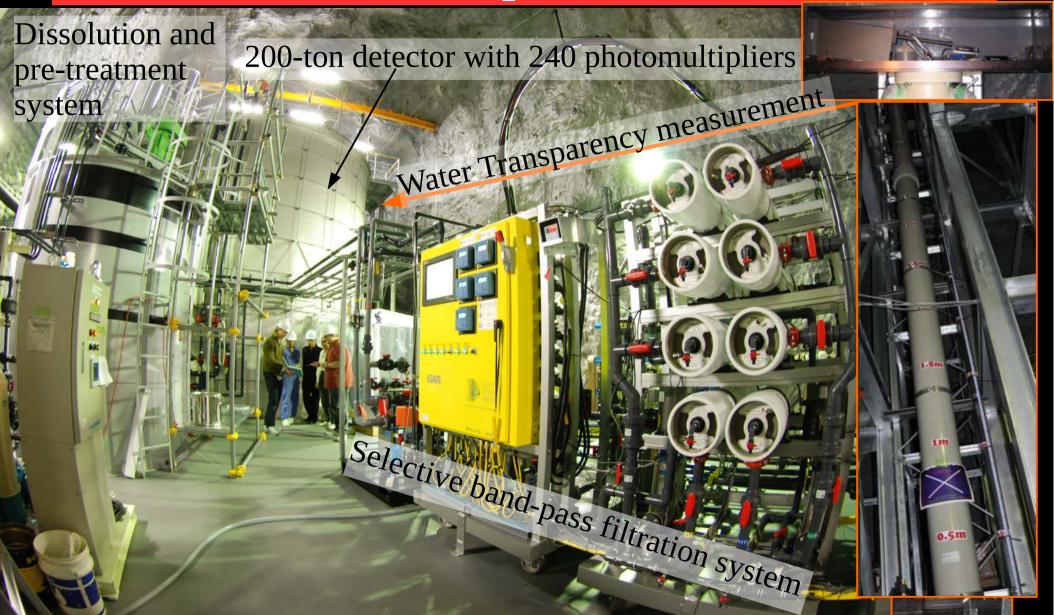
- Fix water leak
- Replace ID and OD dead PMTs
- Improve water flow in SuperK
- Improve HV

When?

- June-Dec. 2018 refurbishment
- Jan. 2019: pure water
- 20XX (T1): 0.02% Gd sulfate
- 20XX (T2): 0.2% Gd sulfate


The road to SuperK-Gd: EGADS

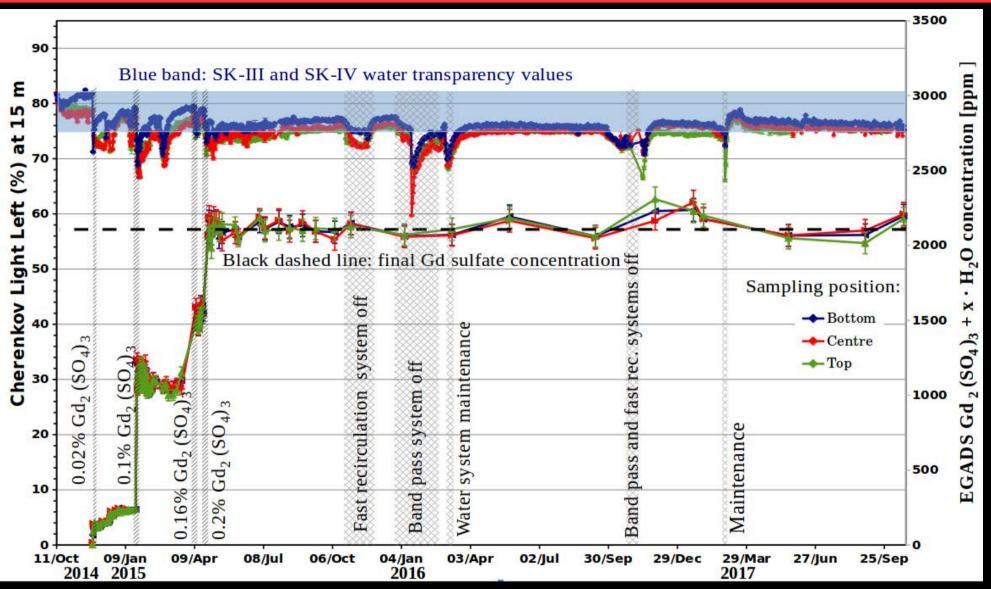
Because of all the exciting possibilities, in June 2009 the SuperK collaboration launched the EGADS project


Evaluating Gadolinium's Action on Detector Systems

<u>Our Goals:</u>

- Water purification system
- Monitor the water transparency
- Effects on detector components
- Adding/removing Gd
- Neutron background

The road to SuperK-Gd: EGADS



The EGADS detector was build using the same materials as in SuperK

11

EGADS' main result

<u>0.2 % Gd sulfate is</u> as <u>transparent</u> to Cherenkov light as pure-water Our water system achieves the above with <u>no Gd losses</u> <u>Gd concentration is homogeneous</u> in our detector

The road to SuperK-Gd

GADZOOKS! Proposal

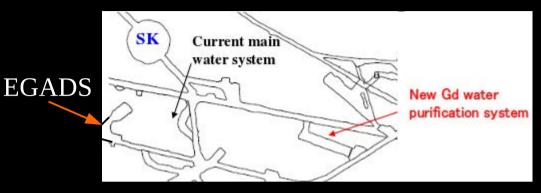
M. Ikeda,¹ Y. Kishimoto,^{1,2} M. Nakahata,^{1,2} H. Sekiya,^{1,2} Ll. Marti,² M. R. Vagins,^{2,4}
H. Ishino,³ A. Kibayashi,³ Y. Koshio,³ T. Mori,³ M. Sakuda,³ C. Xu,³
N. J. Griskevich,⁴ W. R. Kropp,⁴ A. Renshaw,⁴ M. B. Smy,^{4,2} P. Weatherly,⁴
P. Fernandez,⁵ L. Labarga,⁵ Y. Takeuchi,^{6,2} T. Yano,⁶ and R. Akutsu⁷

(The GADZOOKS! Working Group)

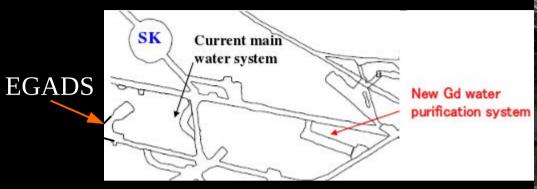
¹Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan
²Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
³Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan
⁴Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA
⁵Department of Theoretical Physics, University Autonoma Madrid, 28049 Madrid, Spain
⁶Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan
⁷Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan (Dated: June 16, 2015)

On June 27, 2015, the Super-Kamiokande collaboration approved the SuperK-Gd project

Leak fix


Two types of sealant materials: BIO-SEAL 197 (strong but rigid) and MineGuard-C (flexible)

Seal all submerged welded areas


New Water System for SuperK-Gd

New Water System for SuperK-Gd

Cavern for the new water system has been excavated

Equipment has been already installed (Gd solution, etc)

ID PMT replacement

About 140 ID PMTs have been replaced

Cables and connections of problematic PMTS were checked

OD work

- About 200 OD PMTs have been replaced (about 100 on the top)

- Tyvek replacement: B-W and W-W Tyvek

Summary

- SuperK-Gd: Adding Gd sulfate at 0.2% in mass will add neutron tagging capabilities to Super-Kamiokande
- EGADS has shown its feasibility: we can remove impurities and maintain high transparency water, with basically no Gd losses, we can remove Gd efficiently when needed, etc
- Faulty OD and ID PMTs are being replaced
- Detector structure being refurbished:
- We are fixing the leak at SuperK using two sealants: BIO-SEAL 197 and MineGuard-C

Summary

- SuperK-Gd: Adding Gd sulfate at 0.2% in mass will add neutron tagging capabilities to Super-Kamiokande
- EGADS has shown its feasibility: we can remove impurities and maintain high transparency water, with basically no Gd losses, we can remove Gd efficiently when needed, etc
- Faulty OD and ID PMTs are being replaced
- Detector structure being refurbished:
- We are fixing the leak at SuperK using two sealants: BIO-SEAL 197 and MineGuard-C

Thank you for your attention!!

Backgrounds

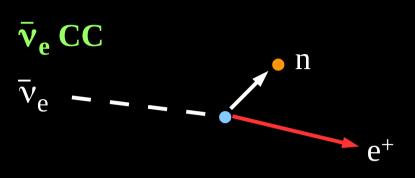
Relevant radioactive contamination, typical impurities in untreated Gd sulfate and our requirements from our physics goals:

Chain	Part of the chain	Typical (mBq/Kg)	SRN (mBq/Kg)	Solar (mBq/Kg)	
238 T T	²³⁸ U	50	< 5	-	
200	²²⁶ Ra	5	-	< 0.5	
232 m1	²³² Th	10	-	< 0.05	
²³² Th	²²⁸ Th	100	-	< 0.05	
235 _{T T}	²³⁵ U	32	-	< 3	
²⁰⁰ U	²²⁷ Ac/ ²²⁷ Th	300	_	< 3	

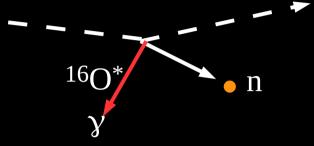
Backgrounds

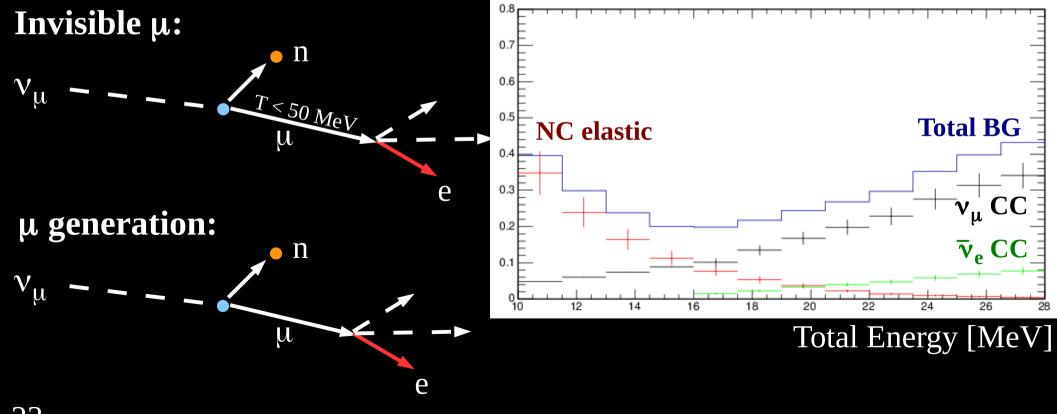
Relevant radioactive contamination, typical impurities in untreated Gd sulfate and our requirements from our physics goals:

Chain	Part of the chain	Typical (mBq/Kg)	SRN (mBq/Kg)	Solar (mBq/Kg)	Company A	Company B	Company C
238т т	²³⁸ U	50	< 5	-	< 0.04	< 0.04	< 0.04
²³⁸ U	²²⁶ Ra	5	-	< 0.5	< 0.2	< 0.2	~ 1
232 1	²³² Th	10	-	< 0.05	0.02	0.06	0.09
²³² Th	²²⁸ Th	100	-	< 0.05	< 0.3	< 0.26	~ 2
235 т т	²³⁵ U	32	-	< 3	< 0.4	< 0.3	< 1.3
²³⁵ U	²²⁷ Ac/ ²²⁷ Th	300	-	< 3	< 1.5	< 1.2	< 3.1


We plan to use resins AJ4400 and AJ1020 to further remove U and Ra after dissolving Gd sulfate

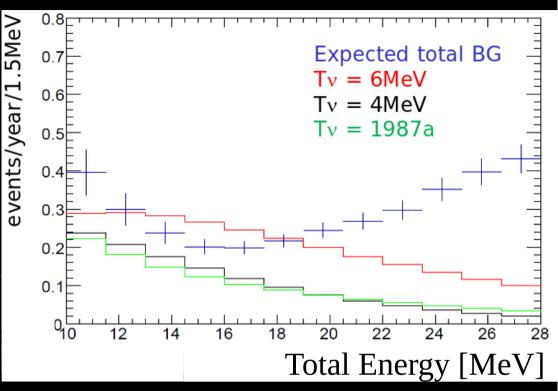
Measurements done at Canfranc, Boulby and Kamioka Company names hidden


Atmospheric ν backgrounds


• Charge Current:

• Neutral Current:

NC elastic



Background vs expected signal

SRN flux: Horiuchi, Beacom, Dwek PRD, 79, 083013 (2009)

The detection of SRN depends on the typical SN emission spectrum

 $T_v \sim 5 (M_{NS}/1.4 M_{\odot})^{1/3} (R_{NS}/10 km)^{-3/4}$

SRN number of expected events after 10 years of observation

HBD models	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	significance (2 energy bin)
T _{eff} 8MeV	11.3	19.9	31.2	5.3 σ
T _{eff} 6MeV	11.3	13.5	24.8	4.3 σ
T_{eff} 4MeV	7.7	4.8	12.5	2.5 σ
T _{eff} SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	

With SuperK-Gd the first SRN observation is within our reach!!

The road to SuperK-Gd: how it started

Once upon a time...

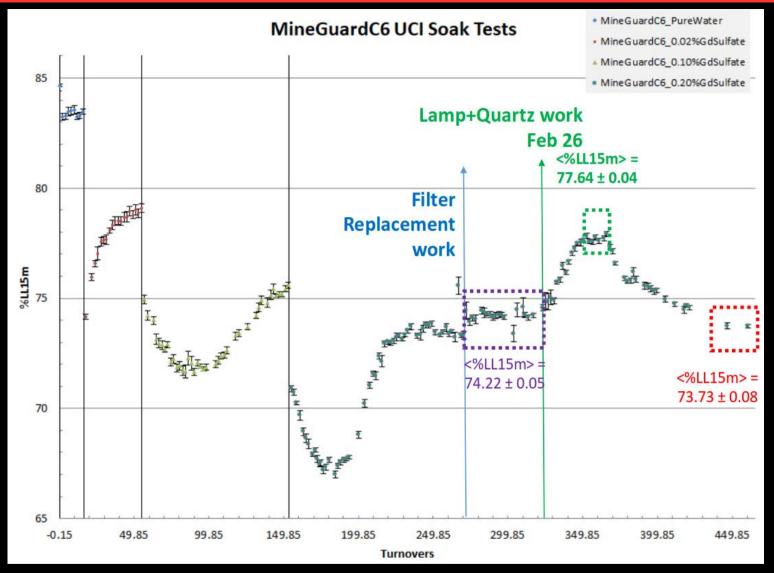
VOLUME 93, NUMBER 17

PHYSICAL REVIEW LETTERS

Antineutrino Spectroscopy with Large Water Čerenkov Detectors

John F. Beacom¹ and Mark R. Vagins²

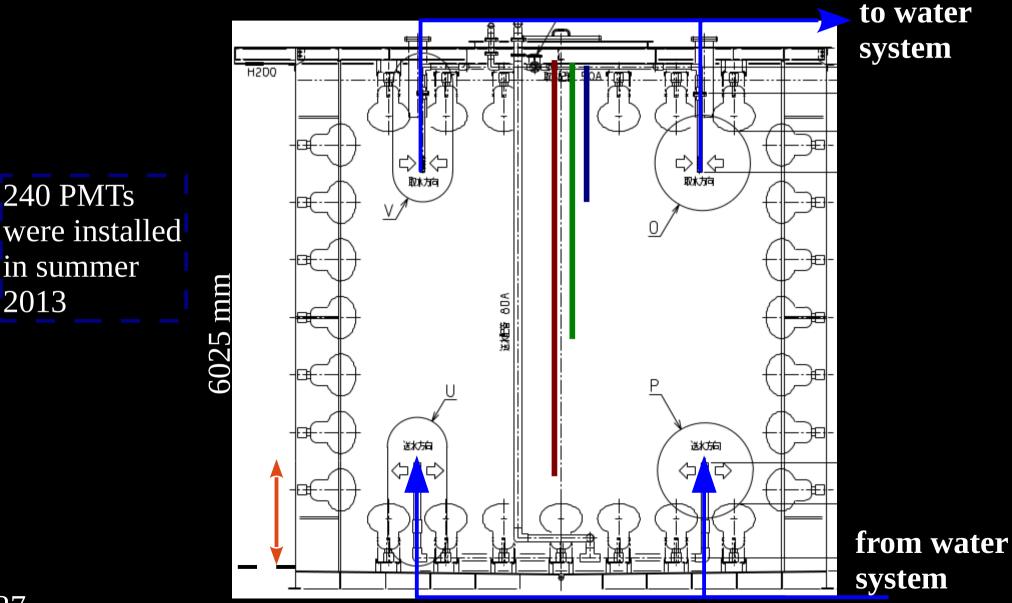
¹NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA ²Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, California 92697, USA (Received 25 September 2003; published 20 October 2004)


We propose modifying large water Čerenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with $\sum E_{\gamma} = 8$ MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction $\bar{\nu}_e + p \rightarrow e^+ + n$ (similarly for $\bar{\nu}_{\mu}$). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, galactic supernova detection, and other topics are discussed.

DOI: 10.1103/PhysRevLett.93.171101

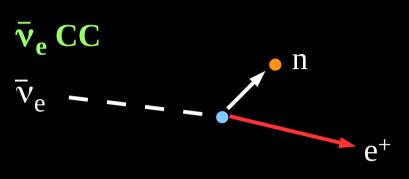
PACS numbers: 95.55.Vj, 29.40.Ka

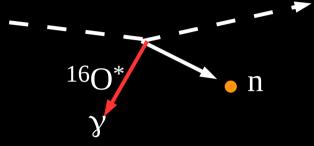
...it was proposed to add **gadolinium** to the ultra-pure water of SuperK. Adding Gd would **make neutrons visible**, which would allow the detection of neutrons with high efficiency.

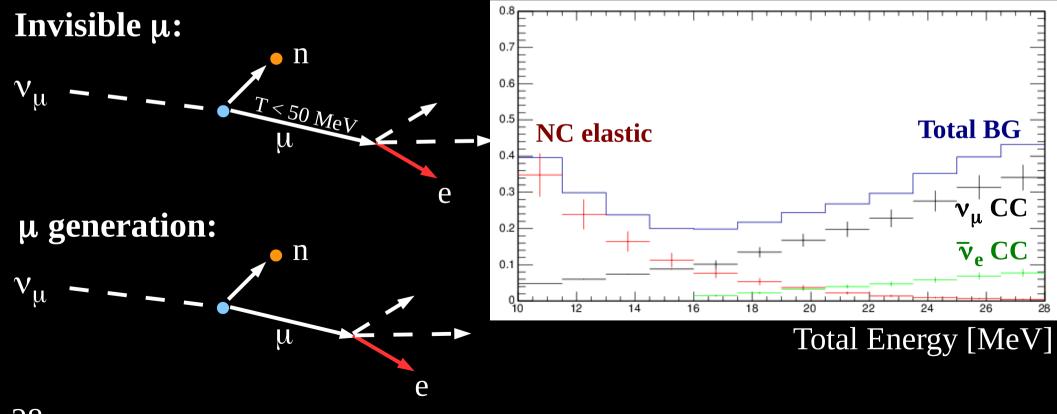

Mine-guard-C soak tests

Soaked Mine-guard-C in Gd loaded water with good results: Cherenkov ilght loss in 15 m is 77.64 % (well within the typical SK-III SK-IV values)

EGADS detector

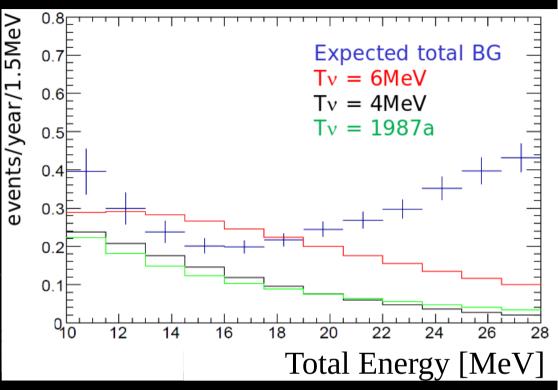

Sampling positions at 1660 mm, 3320 mm and 4990 mm from top of the tank (for water transparency, UDEAL, and Gd concentration measurements)


Atmospheric ν backgrounds


• Charge Current:

• Neutral Current:

NC elastic

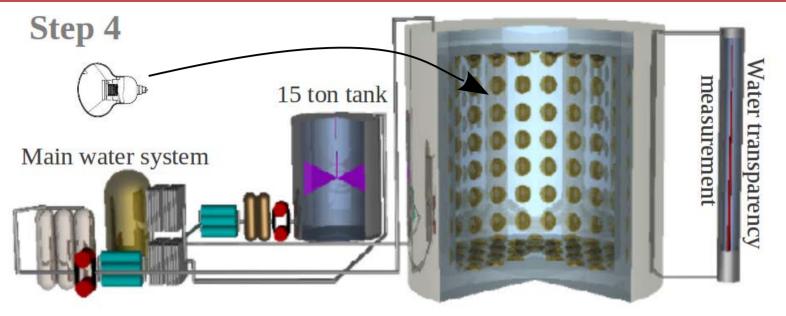


Background vs expected signal

SRN flux: Horiuchi, Beacom, Dwek PRD, 79, 083013 (2009)

The detection of SRN depends on the typical SN emission spectrum

 $T_v \sim 5 (M_{NS}/1.4 M_{\odot})^{1/3} (R_{NS}/10 km)^{-3/4}$



SRN number of expected events after 10 years of observation

HBD models	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	significance (2 energy bin)
T _{eff} 8MeV	11.3	19.9	31.2	5.3 σ
T _{eff} 6MeV	11.3	13.5	24.8	4.3 σ
T_{eff} 4MeV	7.7	4.8	12.5	2.5 σ
T _{eff} SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	

With SuperK-Gd the first SRN observation is within our reach!!

Step 4: EGADS Detector

- Step 1: Circulation through the 200 ton tank with pure water (first half 2011 pure water circulation)
 Done!

- **Step 2:** Circulation through the 15 ton tank with $Gd_2(SO_4)_3$ (from middle
- 2011 to end 2012) **Done!**
- **Step 3:** Circulation though the 200 ton tank with Gd₂(SO₄)₃ **Done!**
- Step 4: PMT mounting (240 in total). Done!
- **Step 5:** Full realization of the EGADS project **Done!**