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Reactor monitoring

All done before. .., also I gave a very similar talk at
AAP2014.

Power monitoring Fuel burn-up

January

Korovkin et al., 1988 Klimov et al., 1994

Recent results on fuel evolution Daya Bay, 2017; RENO,
2018; DANSS, 2018 confirm our general understanding! |



The standard detector
L 8y 4.3E29 target protons

No overburden

Irreducible cosmogenic back-
ground

How far have we come with

respect to the blue box detec-
tor (BBD)?

reactor fuel moderator power {sq standotf
[MWth| [d]  [m]
SMWe NU  graphite 20 450 20
IR40 NU D50 40 300 20
ELWR LEU H50 100 330 20
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Recent advances

PROSPECT 1s a 2D seg-
mented surface detector us-
ing Li-doped liquid scintil-
lator. PSD to reject cos-
mogenic backgrounds, signif-
icant shielding.
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PROSPECT, 2018
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Reactor status — near-field
Simplest thing to ask: Is the reactor on or oft?

I use time to 95% C.L. detection based on a
PROSPECT-s1zed detector with PROSPECT

background, purely rate-based.

SMWe IR40 ELWR

1.2d 8h 1.5h
Time to detection at 95% C.L.

—=Can be done with a xerox copy of PROSPECT.

NB — scaling from the CONUS presentation at
Neutrino 2018 indicates 7.5 ton years of exposure.
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Reactor status — mid-field

Yongbyon

450 m mountain (Yak-
san) at about 2 km from
the reactors.

~ 300 m.w.e. overbur-
den possible at around
1 km distance, similar to
Daya Bay near detectors,

scale from Daya Bay,
2012.

SMWe ELWR Time to detection at 95% C.L. for a 50 ton
detector of Daya Bay-like detector perfor-
100d 1 week e,
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Exploiting the energy spectrum
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I 45days omparing a reactor core

alLLECRE ot 45 days 1n the cycle to
the same core at 315 days
in the cycle
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This 1s based on the blue
box detector with zero
background.

Difference

Key to the capability to restore the continuity of
knowledge, unique to antineutrinos...
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The N month scenario

* Full inspector access for N-1 month

» Reactor shutdown in the N** month

» Loss of the continuity of knowledge in the N**
month

Reasons could range from technical glitch, over a
diplomatic tensions (Twitter!) to full scale diversion —
finding out which one is the true one can make the
difference between peace and war.
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IR40
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270 days corre-
recovery of Gokt sponds to 93%
' plutonium-239
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An undeclared
refueling can be

detected at 90%
CL. within 7
days.
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blue box detector, zero background
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Reactor core swap detection

6 times PROSPECT ~ BBD, all times scale as m~!.
BG level 1 corresponds to PROSPECT.
ts9=300—-450 days, time to make 8 kg plutonium.

Core swap at tsq, gets easier for ¢ > tgq.

BG level ELWR IR40 SMWe

This 1s based on a full

1 134 109 1154 spectral fit and uses

0.5 3 59 830 the same analysis tech-

niques as used 1n our

0.2 56 30 637 prior DPRK and Iran
0 45 16 527 papers.

Days to detection at 95% C.L.

Modest background reduction yields ¢ < 90d,
but not for the SMWe.
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Measuring in-core Pu mass
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The amount of neutrinos from plutonium per unit
mass of Pu depends on neutron flux density:
graphite moderated, NU-fueled reactors have a very
low neutron flux density.
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Spent fuel detection
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There 1s flux from spent fuel
above IBD threshold.

Even decades after discharge.
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Nearly all in strontium-90.

Neutrino Flux

Neutrino Energy E [MeV]

This would be very useful to find reprocessing wastes
— nuclear archeology, endgame of denuclearization.

Challenges:
rates are low and all signatures are below 3 MeV.
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DPRK example

8kg of plutonium (1 SQ)
leaves about 2 mol of
strontium-90 1n the waste
stream.

55 IBD events in BBD at
10 m 1n one year.

BG | 1SQ 10SQ 100 SQ

0.01 | 1.7 0.024 0.00089
0.1 0.18 0.0024

1 | 0.018
Years to detection at 95% C.L.
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Technical summary

Antineutrino monitoring provides good
security-relevant sensitivities for a a wide range of
small to medium sized reactors.

For near-field, detector capability is existing,
see PROSPECT talk.

3D segmented detectors combined with PSD could
yield another factor 5-10 improvement in S/B
see CHANDLER talk.

Can we ever do this with solid scintillator?
see NuL AT talk.

Calibration of antineutrino yields crucial next step,
still.
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Safeguards summary

Antineutrino monitoring can detect a core swap
within a few months, even with demonstrated
background levels.

Antineutrino monitoring 1s non-intrusive and can be
performed in situ at a running reactor.

TAEA safeguards (INFCIRC/153 and 540)
probably not the right context.

Regional nuclear deals offer a better case.
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